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Abstract

India’s primary agricultural and food support programs — fertilizer subsidies, pro-
curement at Minimum Support Prices (MSP), and the Public Distribution System
(PDS) — cost over 1.5% of GDP and directly impact hundreds of millions of producers
and consumers. Yet there is limited understanding of how these large programs interact
in equilibrium to shape welfare across the farm-size and income distributions. We de-
velop an equilibrium model featuring heterogeneous risk-averse farmers who choose crop
portfolios and input allocations, and heterogeneous households who make consumption
decisions. We simulate counterfactuals that either scale back existing interventions or
alter their design. Reducing access to procurement generates welfare losses for larger
farmers and the poorest consumers. Conversely, the negative impact of cutting fertilizer
subsidies on farmers is largely mitigated by an equilibrium increase in market prices. In
contrast, redesigns such as equalizing procurement access or targeting fertilizer subsi-
dies to smaller farmers shift benefits toward the poorest producers while generating net
welfare gains. More broadly, our analysis reveals that these policies are deeply inter-
connected: reforms to one propagate through procurement, prices, and food transfers
to alter the incidence of others, highlighting the need for a unified framework to assess
the impact of any individual program.
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1 Introduction

Governments intervene heavily in agricultural input and output markets.1 In developing

countries, where these interventions command a substantial share of the public budget,

policymakers often champion them as essential instruments for poverty alleviation and food

security.2 Yet despite the scale and stated redistributive goals of these programs, there is

limited evidence on their equilibrium distributional effects. Understanding these effects is

especially challenging because beneficiaries often face multiple concurrent programs and the

incidence of any single intervention may depend on the others in place.

In this paper, we study the distributional effects of agricultural interventions when mul-

tiple programs operate simultaneously. We do so in India, focusing on three of its oldest

and largest agricultural programs: government procurement of staple grains at Minimum

Support Prices (MSP), subsidized food distribution through the Public Distribution System

(PDS), and fertilizer subsidies. These programs have been in place for over five decades,

reach a large share of the population, and account for roughly 10 percent of government

budget. To study their equilibrium effects, we develop a structural model with heteroge-

neous producers and consumers, estimate it using farmer and household-level microdata,

and use it to quantify the incidence of existing policies and evaluate potential reforms.

We begin by documenting three facts that motivate our modeling choices. First, govern-

ment procurement and food distribution have opposing distributional profiles: the probabil-

ity of selling to the government rises sharply with farm size, while the share of consumption

sourced from the PDS falls with household income. Second, the MSP does not function as a

price floor. Roughly 85 percent of rice and wheat sales occur at prices below the announced

MSP, and the share of farmers who sell to the government varies widely across states—from
1Total support to agriculture across 54 major economies monitored by the OECD reached USD 817 billion per

year in 2019–21 (OECD, 2022).
2In sub-Saharan Africa, input subsidy programs take up roughly 30 percent of agricultural budgets on average,

reaching as high as 70 percent of public agricultural expenditure in countries like Malawi. (Jayne & Rashid, 2013).
These programs persist in part because politicians frame them as essential support for small and marginal farmers –
a narrative that makes their actual distributional effects a first-order policy question (Anderson, Rausser, & Swinnen,
2013; Birner, Gupta, & Sharma, 2011; Holden, 2019).
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over 35 percent of wheat farmers in Punjab to less than 1 percent in Bihar. Third, fertilizer

subsidies matter for agricultural output. Using a 2010 reform, which raised non-urea fertil-

izer prices while holding urea prices fixed, we show that districts that had previously relied

more on the newly expensive fertilizers saw larger declines in both fertilizer use and crop

output. Together, these facts suggest that policy incidence depends on who can access each

program and how farmers respond to the incentives they create.

To quantify how these programs jointly impact producers and consumers, we develop

a structural model that links farmers’ crop and input decisions to household demand in

the presence of multiple government interventions. On the supply side, risk-averse farmers

choose a portfolio of crops and then allocate land, labor, machinery, and fertilizer to each

crop under yield and price risk. Crop selection is driven by two key sources of unobserved

heterogeneity. The first is farmer-crop-specific productivity, which captures differences in

skill, soil suitability, and local growing conditions. The second is access to MSP procurement.

In our data, we observe whether a farmer sold to the government, but not whether he

could have: a farmer with access may transact with private buyers when market prices

are attractive. Motivated by the descriptive evidence, we model the probability of access

as depending on crop, farm size, and region; for farmers with access, the MSP truncates

downside price risk by guaranteeing a floor if private buyers offer less. On the demand

side, households vary in income and PDS entitlements, and supplement PDS grains with

market purchases. In equilibrium, prices adjust to clear both the private market and the

government’s procurement and distribution operations.

We estimate the model using detailed microdata from multiple nationally representative

surveys: the Cost of Cultivation Surveys, which follow the same farmers over three consec-

utive years (6 planting seasons) and record inputs and outputs separately for each crop; a

cross-sectional survey of agricultural households that records sales channels and prices; and

a consumer expenditure survey that captures household purchases by source, including how

much comes from the PDS. The panel structure of the production data allows us to estimate

production function parameters from within-farmer-crop variation over time. Price data let

us estimate the distribution of private market offers after accounting for MSP-induced cen-
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soring. Moreover, once we know how often offers fall below the MSP, the share of farmers

selling to the government becomes informative about the probability of access to the MSP.

The remaining supply-side parameters—risk aversion, access probabilities, productivity dis-

tributions, and fixed costs—jointly influence crop choice and are estimated together. We do

so using simulated method of moments, matching observed moments to their model-implied

counterparts: crop portfolio shares pin down fixed costs, yields identify productivity dis-

tributions, the share selling to government buyers identifies access probabilities, and input

expenditure shares identify risk aversion. Finally, we calibrate demand parameters directly

from observed expenditure shares across income groups after accounting for PDS transfers.

We use the estimated model to evaluate four policy reforms: reducing access to gov-

ernment procurement, cutting fertilizer subsidies uniformly, targeting subsidy reductions to

larger farmers, and equalizing MSP access across farm sizes while holding total procurement

fixed. A key finding from these exercises is that the three programs are interdependent.

Reducing MSP access, for example, lowers fertilizer use because the guaranteed price floor

encourages input use. Conversely, cutting fertilizer subsidies contracts agricultural supply,

which reduces procurement and, in turn, PDS transfers. These linkages mean that reforms

to any single policy propagate through the system to alter the incidence of the others.

These reforms produce different effects across the farm-size and income distributions.

Scaling back MSP access hurts larger farmers, who have high baseline access to procure-

ment, and the poorest consumers, who depend heavily on food transfers through the PDS.

In contrast, uniformly raising fertilizer prices has a limited impact on farmers because equi-

librium output prices rise to offset higher input costs, while the PDS partially insulates

low-income households from these price increases. Redesigning programs, rather than sim-

ply cutting them, produces more progressive outcomes. When fertilizer subsidies are targeted

only to smaller farmers, the smallest producers gain nearly three percent in welfare relative

to baseline: they continue to receive subsidized inputs while the supply contraction by larger

farmers pushes up market prices. Similarly, equalizing MSP access redistributes benefits

from the largest farmers to smaller ones without affecting consumers. Of the scenarios we

consider, equalizing access to procurement generates the largest net gain at approximately
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1.3 percent of baseline government expenditure, while scaling back MSP access is the only

reform that reduces aggregate surplus. Taken together, these results suggest that debates

over agricultural policy in India need not be framed as a choice between free markets and

state intervention. Reforms that improve targeting—whether by directing input subsidies to

smaller producers or by expanding procurement infrastructure to underserved farmers—can

shift benefits toward the poorest farmers and consumers while generating net gains.

Related literature. We add to a growing literature that uses structural methods to ex-

amine the equilibrium impact of government policies on agricultural markets in developing

countries. Existing work typically considers one policy instrument at a time, whether input

subsidies (Bergquist et al., 2025; Diop, 2025), trade restrictions (Chatterjee, 2023), or envi-

ronmental regulation (Hsiao, 2025; Scott et al., 2025; Souza-Rodrigues, 2019). Our setting

features multiple large-scale programs that jointly move both supply and demand, and our

main contribution is integrating these policies into a single equilibrium model, estimated us-

ing detailed farmer-by-crop panel microdata, where reforms to one policy alter the incidence

of the others. Chakraborty, Chopra, and Contractor (2025) also study the joint impact of

MSP and input subsidies in India but their two-sector model takes a macro perspective on

sectoral reallocation and the agricultural productivity gap rather than the precise mechanics

of how these policies operate within the agricultural sector. Thus, a key payoff from our

more granular and institutionally grounded approach is the ability to evaluate alternative

policy designs rather than simply assessing whether these programs should exist.

We also contribute to the broader literature on structural models of agricultural pro-

duction. Much of this work has examined the drivers of the large agricultural productivity

gap in developing countries (Foster & Rosenzweig, 1995; Gollin, Lagakos, & Waugh, 2014;

Gollin & Udry, 2021; Lagakos & Waugh, 2013; Suri, 2011). Within this literature, our work

is most closely related to studies examining how risk distorts input (Donovan, 2021) and

crop choice (Allen & Atkin, 2022; Mobarak & Rosenzweig, 2013; Rosenzweig & Binswanger,

1993). We build on this work by modeling the farmer’s decision as a discrete-continuous

portfolio choice problem: farmers select a set of crops (extensive margin) and then allocate

inputs to them (intensive margin) under yield and price risk, and in response to the specific
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incentives created by government policies. Methodologically, we treat farmers as multiprod-

uct firms with endogenous product portfolios in the spirit of frameworks from industrial

organization (Eizenberg, 2014; Wollmann, 2018). This distinguishes our work from existing

models of farm production that typically have farmers choose between broad sectors (e.g.,

agriculture vs. non-agriculture) or crop categories (e.g., staples vs. cash crops) rather than

specific bundles of crops. This distinction is consequential because both policy exposure and

household demand vary at the crop level, and ignoring the crop-choice margin may obscure

the precise channels through which policy reshapes production and welfare.

Finally, our paper speaks to a literature on the distributional effects of large public pro-

grams. Work on food subsidies and transfer design shows that implementation details such

as targeting, leakage, and delivery mechanisms shape who ultimately benefits (Banerjee et

al., 2018, 2019; Gadenne, 2020). A complementary body of work documents that large-scale

interventions generate equilibrium effects that can redistribute surplus between buyers and

sellers (Cunha, De Giorgi, & Jayachandran, 2019; Imbert & Papp, 2015; Muralidharan,

Niehaus, & Sukhtankar, 2023). These studies typically examine policies targeting one side

of the market. We contribute to this literature by studying the joint distributional impact

of consumer-side (PDS) and producer-side (MSP procurement and fertilizer subsidies) inter-

ventions and tracing their equilibrium incidence across farm-size and income distributions.

2 The Indian Agricultural Policy Landscape

Agriculture remains central to India’s economy, even as its manufacturing and service sectors

have grown. The sector is the primary source of livelihood for nearly half of the nation’s

workforce, approximately 600 million people, yet contributes only about 18% to national

GDP.3 The farming landscape is predominantly one of small and marginal holdings, with

an average farm size of just over one hectare, which is a fraction of the average farm size
3Around 46% of India’s population (roughly 600 million people) relies on agriculture as its primary source of

livelihood (Government of India, 2025). This agricultural workforce comprises both land-owning cultivators and
landless agricultural laborers. According to the 2011 Census, landless laborers account for about 55% of all agricultural
workers in India, while cultivators make up the remaining 45% (Singh, 2025).
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in other major agricultural producers like the United States (187 hectares) or Brazil (69

hectares).4 For the many rural households that depend on cultivation, this limited scale

often translates to low and volatile incomes, with average farm household incomes falling

well below the national median. As a broader national challenge, despite being a major

food producer, India is home to hundreds of millions of undernourished people, making food

security a policy priority (FAO et al., 2024).

Against this backdrop, the Indian government has established a patchwork of policies to

support farmers and ensure food security. The three longest-running and most significant of

these are (1) government procurement at Minimum Support Prices (MSP) for select crops,

(2) distribution of subsidized foodgrains through the Public Distribution System (PDS), and

(3) input subsidies that reduce fertilizer costs for farmers.

The Minimum Support Price (MSP) is a form of market intervention intended to insulate

farmers from price volatility and provide a measure of income stability. Each season, the

government announces an MSP for several crops and procures select staples, primarily rice

and wheat, at these pre-determined prices. The scale of this operation is vast; in recent

years, the government has procured about 38% of the total rice and 35% of the total wheat

produced in the country.5 In theory, the MSP acts as a price floor that farmers can expect

to receive for their crops. However, as we document in Section 2.2, access to this program is

severely limited, meaning that in practice, most farmers sell their output in private markets

at prices well below the MSP.

Complementing its price support for farmers, the government operates the Public Distri-

bution System (PDS) to enhance food security for consumers. The PDS is the largest food

subsidy program in the world, providing heavily subsidized rice and wheat to over 800 million

eligible people through a vast network of over 500,000 “fair-price shops”.6 The program has

its roots in the post-independence era of food shortages and has since evolved from a univer-
4The average farm size in India is 1.08 hectares based on the 2015-16 Agricultural Census (Press Information

Bureau, Government of India, 2020).
5From Government of India (2020), in 2018-19, total output of rice was 116.48 million tonnes and total output of

wheat was 103.60 million tonnes. In that same year, the government procured 44.40 million tonnes of rice and 35.80
million tonnes of wheat, which corresponds to 38.1% and 34.6% of total output, respectively.

6See Press Information Bureau, Government of India (2021) and World Bank (2019) for more details.
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sal entitlement to a system targeted primarily at low-income households. Operationally, the

grain procured from farmers under the MSP forms the central stock for distribution through

the PDS, creating a direct link between producer support and consumer subsidies.

The third major intervention is on the input side: fertilizer subsidies. Introduced in the

1970s during the Green Revolution, the policy compensates manufacturers for the difference

between the cost of production and a fixed, low maximum retail price paid by farmers. The

subsidy is particularly pronounced for urea, the most common nitrogenous fertilizer, which

receives a 75% subsidy per kilogram compared to approximately 35% for DAP and MOP

fertilizers (Government of India, 2016). While fertilizer use has become widespread and is

credited with significant gains in crop yields, the subsidy regime has also raised concerns

about skewed nutrient consumption, fiscal unsustainability, and environmental degradation

from overuse (Gulati & Banerjee, 2015).

These three policies collectively represent a massive fiscal commitment: between 2011-12

and 2021-22, combined expenditures on food and fertilizer subsidies averaged over 10.6%

of annual government expenditures (see Appendix Figure A.1), or more than 1.5% of In-

dia’s GDP.7 This large fiscal footprint, combined with questions about efficiency and equity,

has spurred persistent calls for reform. The tension is particularly acute for procurement

policy: while policymakers have debated how to contain costs, farmers’ groups have mobi-

lized in the opposite direction, organizing large-scale protests to demand a legal guarantee

for the MSP, aiming to transform it from a government procurement price into a manda-

tory, universal price floor (Reuters, 2021; The New York Times, 2024). Simultaneously, the

ballooning fiscal burden of fertilizer subsidies and their environmental externalities have fu-

eled a long-standing, separate debate on how to rationalize input support without harming

farmer welfare and food security (Gulati & Banerjee, 2015). Quantifying the net impact of

this complex policy environment on farmers, consumers, and government budgets, therefore,

remains a first-order empirical question for policy reform.
7These figures are based on revised estimates from India’s union budget documents.
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2.1 Data Sources

Our empirical analysis of these policies draws on several publicly-available datasets.

Cost of Cultivation Surveys (CCS)

To model farm-level production, we use detailed micro-data from the Cost of Cultivation

Surveys (CCS), conducted by the Department of Agriculture in India. The CCS employs

a multi-stage stratified sampling design that is representative of the production conditions

for major crops grown in India. States are first divided into agro-climatic zones, from which

tehsils (sub-districts) and then village clusters are selected with probability proportional to

the area under major crops. Within each cluster, operational holdings are stratified into five

size classes, and a fixed number of farmers is randomly sampled from each class.8

A key feature of the survey is its panel structure. We use three waves of the survey,

covering the years 2011-12 to 2019-20, during which each sampled farmer is followed for all

planting seasons over three consecutive years. Importantly, these surveys record detailed

data on inputs — both in physical quantities (e.g., hours of labor, kilograms of fertilizer,

hours of machinery) and expenditures — separately for each crop cultivated by the farmer.

This disaggregation allows us to estimate crop-specific production functions which feed into

our supply-side model of crop and input choices. See Appendix C for more details.

NSS 77th Round: Survey of Agricultural Households

The 77th round of the National Sample Survey (NSS) of Agricultural Households, a nation-

ally representative cross-sectional survey conducted in 2019, provides several key inputs for
8By stratifying holdings by size before the final stage of sampling, the survey ensures that it captures the full range

of input intensities and technologies used across different scales of operation. A simple random sample of farmers
would fail to capture enough of the medium and large farms that, while fewer in number, account for a significant
share of total output and land use.
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our model.9 First, we use these data to observe the shares of farmers cultivating different

bundles of crops. These empirical portfolio shares serve as important moments for identi-

fying the crop-specific fixed costs in our structural estimation. Second, the survey provides

detailed information on prices and sales channels. While the CCS provides rich production

data, it does not identify the buyers of farm output. The NSS data fill this gap, allowing us

to observe the probability that a farmer with certain characteristics (e.g., farm size, region)

sells to a government agency. As we argue later, these characteristics-specific probabilities

are essential for modeling access to the Minimum Support Price (MSP). Furthermore, the

data on realized output prices received by farmers, when combined with consumer prices

of key crops, allow us to estimate the parameters governing region-specific distributions of

markdowns in the private market. We provide more details on these components of the

model in Section 3 and present summary statistics for the NSS data in Appendix Table C.2.

NSS 68th Round: Consumer Expenditure Survey

To model demand, we leverage the 68th round of the NSS Consumer Expenditure Survey,

which is a nationally representative survey of over 100,000 households conducted from July

2011 to June 2012. Unlike the 77th round, which focused on agricultural households in rural

areas, the 68th round was a survey of both rural and urban households. These data provide

information on household size, income, and detailed consumption of various commodities,

including rice and wheat. Crucially, household purchases of these staple crops are broken

down by source, allowing us to observe the share of a household’s consumption that is met

through the Public Distribution System (PDS). This allows us to construct household-specific

PDS entitlements which we incorporate directly into our demand-side model.
9The survey is conducted by the National Sample Survey Office (NSSO) to generate a sample representative of

the nation’s agricultural households. The survey was conducted in 2019 in two visits to the same set of households,
covering the two halves of the agricultural year 2018-19: the kharif (monsoon) season, covering July-December 2018,
and the rabi (winter) season, covering January-June 2019. The sample we rely on includes approximately 59,500
rural households.
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ICRISAT District Level Database (DLD)

Finally, we also rely on the ICRISAT District Level Database (DLD) for the period 1966-

2016. This database provides annual, district-level statistics on key agricultural variables,

including cropping patterns, fertilizer consumption, and output prices. We use these panel

data for our reduced-form analyses of the impact of fertilizer subsidy policy changes on

production decisions and outcomes.

2.2 Facts

We document three empirical patterns in India’s agricultural policy landscape that inform

our subsequent modeling choices.

Fact 1: Government procurement skews toward larger farmers while foodgrain

distribution targets lower-income consumers.

We begin by documenting the opposing distributional outcomes of India’s two interlinked

foodgrain programs. As shown in Figure 1, these complementary policies create contrasting

distributional profiles of their respective beneficiaries: procurement at Minimum Support

Price (MSP) is more accessible to larger farmers, while the Public Distribution System

(PDS) functions as a progressive transfer to low-income consumers.

On the production side, sales to government buyers are heavily skewed towards larger

farmers.10 Figure 1a plots the probability of selling to a government buyer against farm size.

Conditioning on farmers who sell any output, we see a clear positive and roughly (log) linear

relationship: as farm size increases, so does the likelihood of selling to a government agency.11

10While this pattern has been documented by several studies (e.g., Gupta, Khera, and Narayanan (2021)), we
emphasize it here as it provides the direct empirical motivation for a core feature of our model: heterogeneity in
access to government procurement by farm size.

11The positive relationship between the probability of selling to a government buyer and farm size is not just due
to regional differences in land size distribution. The pattern persists even after controlling for state fixed-effects (see
Figure A.3). Nor is the pattern generated by an intensive margin choice, where large farmers might be more likely
to sell to both government and private buyers. The data show farmers who sell to the government tend to sell nearly
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Although the pattern is clear, its causes are not: there is limited evidence that pinpoints

why small farmers are less likely to sell to the government but several plausible mechanisms

have been suggested. Small and marginal farmers typically have much lower marketable

surpluses and face higher transaction costs (such as the time and expense of transporting

grain to distant procurement centers), which often leads them to sell at the farm-gate to

local traders instead of to government buyers (Basu, 2011; Das, 2020; G et al., 2024). Larger

farmers, by contrast, are more likely to be aware of MSP opportunities and have the resources

(including better transport and storage facilities) to reach procurement centers and wait for

procurement agents, allowing them to take advantage of the MSP program. Frictions like

corruption and political patronage may also tilt the system in favor of bigger producers and

contribute to the pro-large-farmer bias in procurement (Jitendra, 2015).

On the consumption side, the Public Distribution System (PDS) appears to function as a

progressive transfer program.12 Figure 1b shows the share of total rice and wheat consump-

tion that households receive from the PDS, plotted against household income percentiles.

The program is well-targeted, with the lowest-income households sourcing 60-70% of their

staple grain consumption from the PDS. As intended by the program, in absolute terms,

these households also receive a greater quantity (in kilograms) of PDS grains, as shown in

Appendix Figure A.2. These patterns highlight the heavy reliance of poor households on the

PDS for food security.

Fact 2: MSP is not a price floor and access is highly geographically concentrated.

A potential explanation for the low likelihood of selling to government buyers is that private

markets offer higher prices. The data, however, suggest the contrary: the MSP is an attrac-

tive price relative to the distribution of prices received in the private market. As shown in

Figure 2a, the distribution of prices received by farmers is heavily skewed below the MSP,

their entire output to a single buyer (see Figure A.4). As such, our structural model also does not feature an intensive
margin choice of how much to sell to the government.

12While PDS grains are sold at nominal prices (|2-3/kg) rather than distributed free, these prices represent less
than 10% of market prices. For modeling purposes, we treat PDS transfers as free, though incorporating the nominal
prices would be straightforward and would not materially affect our results.
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with a large mass of transactions (∼85%) occurring at prices below the supposed floor for

rice and wheat.

These national-level statistics mask stark geographic disparities in access to the MSP. In

Figure 2b, we show the proportion of rice and wheat farmers in each state who report selling

to a government buyer. Nationally, only 8.05% of rice farmers and 4.6% of wheat farmers

report selling to the government. As the figure illustrates, likelihood of selling to government

buyers varies sharply across Indian states. For example, in Punjab and Haryana, over 35%

and 22% of wheat farmers sell their output to government buyers, respectively. In stark

contrast, less than 1% of farmers in Bihar report selling wheat to the government, despite

Bihar (2.16 million hectares) having a similar area under wheat cultivation as Haryana (2.55

million hectares) in 2018-19 (Government of India, 2020).

This geographic skew is a legacy of historical policy and infrastructure bias. The public

procurement machinery for food grains was built up during the Green Revolution era in the

late 1960s-70s, focusing on Punjab and Haryana due to their early adoption of high-yield

crop varieties and irrigation infrastructure. These states received heavy investments in mandi

(wholesale markets) networks, storage, and transport to support wheat and rice procurement

for the Public Distribution System (Gupta, Khera, & Narayanan, 2021). Decades later,

MSP procurement remains concentrated in those same states. By contrast, many other

regions (especially eastern India) never saw comparable market infrastructure development.

For example, eastern states like Bihar see minimal procurement, leaving most farmers to

sell to local traders at farm-gate prices (Chaudhary et al., 2024). Fragmented agricultural

markets further entrench these regional disparities. Regulations like the Agricultural Produce

Market Committees (APMC) acts prevent farmers from easily crossing state borders to sell

to government buyers in regions with better procurement infrastructure (Chatterjee, 2023).13

While structural barriers are significant, state-level policy can overcome them. Chhattis-

garh, for instance, operates under a decentralized procurement system, offering substantial
13This is not to say that agricultural commodity markets themselves are fragmented. Evidence suggests that these

markets are relatively well-integrated for traders and intermediaries, with significant trade occurring across states
(Allen & Atkin, 2022). The frictions discussed here, stemming from APMC regulations, historically created barriers
specifically for farmers seeking to directly sell produce outside their designated local markets.
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bonuses above the central MSP and running a network of village-level procurement centers

that enable the vast majority of the state’s paddy farmers to sell at guaranteed prices (Puri,

2012). Such interventions, however, remain exceptions. The combination of limited procure-

ment infrastructure and interstate trade barriers ensures that for most of India, the MSP

functions more as a geographically-concentrated benefit than a universal price guarantee.

Fact 3: Fertilizer prices are an important driver of fertilizer use and agricultural

productivity.

India’s fertilizer subsidy regime, established through the retention price scheme in the late

1970s, has fundamentally shaped the country’s agricultural landscape (Tanpure, 2011). Un-

like Sub-Saharan Africa where fertilizer adoption remains persistently low, India’s generous

subsidies have driven widespread fertilizer use—so much so that policy concerns have shifted

from encouraging adoption to preventing overuse (Chand & Pavithra, 2015; Gulati & Baner-

jee, 2015; Sheahan & Barrett, 2017).

To assess the role these subsidies play in driving fertilizer use and agricultural productiv-

ity, we exploit a natural experiment arising from a major policy reform. In April 2010, the

Government of India launched the Nutrient-Based Subsidy (NBS) scheme, partially deregu-

lating the fertilizer market. This reform replaced the prior system of product-specific conces-

sions on non-urea fertilizers with subsidies fixed per-kilogram of phosphatic (P) and potassic

(K) nutrients.14 Critically, while urea prices remained controlled, the reform lifted retail

price ceilings on non-urea fertilizers (primarily nutrients P and K) allowing manufacturers

to set market prices. (Business Standard, 2012; Press Information Bureau, 2025).

This deregulation triggered immediate and substantial price increases for nutrients P and

K relative to nitrogen (N) that is primarily supplied by urea (Figure 3a).15 Correspondingly,
14For urea, the most heavily used fertilizer, the program operates by setting a low, uniform maximum retail price

(MRP) for farmers and compensating manufacturers and importers for the difference between this controlled price
and their costs of production and distribution.

15We obtain these inputs prices for these nutrients from the Cost of Cultivation Surveys (CCS). While urea contains
only nitrogen (N), some non-urea fertilizers also contain nitrogen, which may explain the small increase observed in
nitrogen prices.
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district-level consumption of these nutrients declined sharply. This pattern is shown in Fig-

ure 3b, which plots coefficients from an event-study regression of (log) fertilizer consumption

by nutrient, controlling for district fixed effects.

To investigate the impact of these price changes on agricultural output, we exploit

district-level variation in pre-reform reliance on P and K fertilizers. We posit that dis-

tricts that relied more heavily on P and K fertilizers before 2010 were more exposed to the

ensuing price shock assuming inertia in production technologies and agronomic practices

prevented easy substitution from these nutrients in the short run. We therefore construct

a district-level measure of “treatment intensity” based on the average, price-weighted usage

of P and K nutrients per unit of planted area in the pre-reform period (2004-2009). Using

this continuous measure of exposure in a difference-in-differences framework, we estimate the

causal effect of the price shock on agricultural production. The results show that districts

with a higher historical intensity of P and K use experienced significantly larger declines in

agricultural output following the 2010 reform. We show this for the district-level output of

rice in Figure 3c, and for a district-level output index in Figure 3d.16 Additional details on

the empirical strategy are provided in Appendix B.

These findings support the idea that fertilizer prices play an important role in driving

fertilizer use and that India’s agricultural productivity is strongly tied to the fertilizer subsidy

regime. Thus, any large-scale reforms to fertilizer policy would require careful design to avoid

adverse impacts on food production and farm livelihoods.

***

The empirical facts presented above illustrate the key features of India’s primary agri-

cultural interventions. While we discussed one policy instrument at a time, these policies

do not operate in isolation. They form an interdependent policy ecosystem. For instance,

the volume of grain procured by the government at minimum support prices (MSP) directly

determines the supply available for the public distribution system (PDS). Similarly, fertilizer
16Output index is constructed as a price-weighted sum of output of all crops grown in that district aggregated using

national median prices of those crops in the period 2004-2009. Note that the prices used to construct the output
index are held constant and therefore only serve as weights to combine output of different crops.
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subsidies and price supports are mutually reinforcing: subsidies help ensure sufficient pro-

duction of crops targeted for MSP procurement, while a guaranteed high price in the form

of the MSP, in turn, may incentivize farmers to invest in higher fertilizer use.

Given these interdependencies, evaluating proposed reforms to any one of these policies

requires a framework that can account for all major policy instruments. In the following

section, we develop a structural model of the agricultural sector to trace how these policies

jointly shape production choices, market prices, and farmer and consumer welfare. The

framework is designed to capture distributional consequences of these policies, quantifying

impacts both across groups (producers and consumers) and within them by income level.

3 Model

In this section, we outline an empirical model of supply and demand for multiple agricultural

commodities which incorporates the impact of the suite of major agricultural programs that

are currently in place in India.

3.1 Timeline

This is a static, single-period model of the agricultural sector. At the start of the planting

season, the government announces policy decisions – fertilizer subsidies and crop-specific

minimum support prices (MSP). Farmers observe these policy announcements and make

planting decisions. After production decisions are made, idiosyncratic shocks are realized

which affect output quantity as well as the price offer made by a private buyer. Farmers

sell their output either to a government buyer or to the private buyer. Finally, households

receive their PDS entitlements and make purchases from the private market. We summarize

the setup of this model in Figure 4.
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3.2 Supply: Farmers’ Production Problem

In each season, farmers decide which bundle of crops to plant and how to allocate various

inputs, including land, to each crop. Both extensive and intensive margin decisions are sen-

sitive to government interventions, which we denote by G =
{
τf , {MSPc}c , {α0rc, α1rc}r,c

}
,

where τf is the fertilizer subsidy rate and MSPc is the minimum support price for crop c.

The policy parameters {α0rc, α1rc}r,c govern access to government buyers in region r for crop

c; we provide more details about these parameters later in this section.

Farmers are indexed by j and are endowed with a farm of total size Aj. In each season,

farmers choose a set s of crops to plant which maximize their expected utility over net profits.

Their indirect utility, Vjs, is given by

Vjs = EUj [Πjs − κjs] (1)

s∗ = argmax
s∈Sj

Vjs

where Sj is the set of all feasible bundles of crops, Πjs are the gross profits from planting set

s, κjs is the fixed cost of planting set s, and Uj is the utility function of farmer j.

Expected utility EUj(·) is derived from a nested optimization problem, where, given a

set s of crops, farmers choose an allocation of land and inputs for each crop in this set so

as to maximize a function of the mean and variance of total net profits. More precisely, let

realized gross profits at the end of the season be given by

Πjs = Rjs − Cjs =
∑
c∈s

(Pjc · Ajc · Yjc (Xjc)− C(Xjc;wr, τf )) (2)

where Rjs and Cjs are the realized revenue and cost of planting set s, respectively; Pjc is

the realized price of crop c, Ajc is the amount of land allocated to crop c, Yjc (Xjc) is the

realized yield of crop c given inputs Xjc, and C(Xjc;wr, τf ) is the cost of inputs Xjc given

region-specific vector of input prices wr and fertilizer subsidy rate τf . The set of inputs Xjc

includes amount of fertilizer, labor hours, and machine hours applied per unit of land for

crop c. As we describe in the next section, both prices and yields are realized at the time of
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harvest and therefore treated as random variables at the time of planting. However, input

costs are known to the farmers at the start of the season.

Now, the expected utility of farmer j from planting set s is given by

EUj [Πjs − κjs] = max
{Ajc,Xjc}c∈s

E (Rjs)− γj ·
√

Var (Rjs)− Cjs − κjs

s.t.
∑
c∈s

Ajc ≤ Aj (3)

where γj is a parameter that captures farmer j’s level of risk aversion. This objective function

penalizes expected revenue by its standard deviation, measuring risk in the same monetary

units as revenue; γj scales this penalty. Since both fixed and input costs are known to farmers

at the start of the season, they are treated as constants in the expected utility function. This

optimization problem is only subject to an area constraint which requires that the sum of

crop-specific area allocations is (weakly) less than the total area of the farm, Aj.17

Next, we provide more details on the components of the expected utility function.

Risky Output

Output of crop c depends on the area allocated to it, Ajc, and yield Yjc (Xjc). Yield is a

function of a vector of inputs per unit area, Xjc = {Ljc, Kjc, Fjc}, where Ljc is the number of

labor hours per unit of land Ajc, Kjc is the number of machine hours per unit of land, and Fjc

is the amount of fertilizer per unit of land. Further, yield depends on a farmer-crop-specific

productivity term, ωjc, which is known to the farmer at the time of planting.

Finally, yield is also subject to an idiosyncratic shock, εjc, which is realized at the time

of harvest. This could be a local weather shock (e.g. extreme heat, low rainfall) or a pest

or disease shock. Only the mean and variance of this shock are known to the farmer at the

time of planting. The uncertainty about its exact realization generates output risk.18

17We abstract from credit constraints in our analysis. This choice is motivated by government priority-sector
lending policies (e.g., Kisan Credit Cards) and NSS data, which indicate that observed farm loans are predominantly
sourced from low-cost institutional lenders and that credit for agricultural purposes is available at a significantly
lower interest rate than for consumption loans. We discuss this further in Appendix E.

18We assume that yield shocks, εjc, are uncorrelated across farmers, so the model does not feature aggregate
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Yield has a Cobb-Douglas form, given by

Yjc(Xjc) = Lβl
jc ·K

βk
jc · F βf

jc · exp {ωjc + εjc} (4)

where βl, βk, and βf are the elasticities of labor, capital, and fertilizer, respectively.19

The unobserved productivity term, ωjc, captures the suitability of farmer j’s land for crop

c as well as any technological know-how and ability, and directly affects both crop choice and

input choices. Therefore, in addition to the standard input endogeneity problem (Griliches

& Mairesse, 1995; Hoch, 1962; Marschak & Andrews, 1944), we also need to account for

selection into crops since the distribution of productivity for the farmers who choose to grow

a particular crop will be different from the non-selected distribution. We come back to this

issue when we discuss estimation in the following section.

Risky Prices

Upon harvest, farmers bring their output to the market where they may or may not encounter

a government buyer. A private buyer is always present. Government buyer offers to buy PDS

crops, rice and wheat, at the pre-announced minimum support price (MSP). If a government

buyer is found and the MSP for a crop is greater than the price offered by the private buyer,

farmer sells all output of that crop to the government; otherwise, the farmer accepts the

private buyer’s offer. Non-PDS crops are always sold to private buyers at the offered price.

What price does the private buyer offer? The price offered by the private buyer, P̃jrc, to

farmer j in region r depends on the price of that crop c in the (national) consumer market,

Pc, and a farmer-specific markdown, µjr. This markdown captures intermediary market

risk. While incorporating such shocks is not infeasible, it would require solving the model for each realization of the
aggregate shock and having farmers form expectations across these realizations, which would significantly increase
the computational burden. An important consequence of aggregate shocks would be a negative covariance between
aggregate output and private market prices, which would act as a natural hedge and lower the total revenue risk faced
by farmers. By assuming this covariance is zero, our model likely overestimates total revenue risk and, consequently,
may underestimate the degree of farmer risk aversion. However, for this mechanism to be quantitatively significant,
the shocks would need to be large and national in scope. Given India’s well-integrated agricultural markets, locally
correlated shocks are less likely to move national prices, a point emphasized by (Allen & Atkin, 2022).

19These elasticities are assumed to be constant across crops for parsimony although relaxing this assumption is
straightforward.
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power as well as the cost of transporting the crop to the consumer market (Chatterjee, 2023;

Meenakshi & Banerji, 2005; Mitra et al., 2018), and is farmer-specific because it depends on

which private buyer matches with the farmer at the time of sale. More concretely, the price

offered by the private buyer is given by

P̃jrc = µjr · Pc

where µjr is drawn from a region-specific distribution, F (θµr ), which is exogenous to the

model.20 Note that, while these distributions differ by region, they do not differ by crop.

Thus, a given farmer in region r faces the same markdown for all his crops.

We assume farmers have rational expectations and know the equilibrium price in the

national market, Pc, when making planting decisions.21 However, at the time of plant-

ing, farmers do not know the realization of the markdown for the private buyer they will

encounter. This uncertainty about the realized price, and its interaction with whether a

government buyer is accessible or not, generates price risk.

More precisely, the realized price for crop c for farmer j in region r is given by

Pjrc = 1 {Zjrc = 1} ·max
{
MSPc, P̃jrc

}
+ 1 {Zjrc = 0} · P̃jrc (5)

where Zjrc = 1 if farmer j can access a government buyer for crop c in region r; Zjrc = 0

otherwise. Thus, with access to a government buyer, the farmer accepts the private offer

only if it exceeds the minimum support price for that crop, MSPc; otherwise, the realized

price equals the MSP for that crop. Without access to a government buyer, the realized

price equals the private buyer’s offer. Note that for non-PDS crops Zjrc = 0 for all j and r.

Whether a government buyer is accessible or not is known to the farmer at the time

of planting. This access to government procurement at a pre-announced price provides the
20For tractability, we do not endogenize the markdown distributions. While markdowns charged by private in-

termediaries may respond to changes in government procurement levels (for instance, reduced government presence
could increase intermediaries’ market power), we hold these distributions constant across our counterfactuals. This
simplification is unlikely to severely bias our welfare calculations because, as shown in Figure 8a, equilibrium price
changes under our MSP counterfactuals are negligible (less than 0.2%). With such minimal price movements, there
is limited scope for markdown adjustments to materially affect our welfare estimates.

21Knowing the equilibrium private market price requires solving a very complex problem. Alternatively, we can
assume that farmers extrapolate equilibrium private market prices from the average prices in the previous year. This
extension is easy to incorporate since we observe the same farmer multiple times.
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farmer with a valuable price floor, analogous to holding a put option: the farmer has the

right, but not the obligation, to sell their output at a “strike price” equal to the MSP for

that crop, which effectively truncates the lower tail of the private price distribution. This

unambiguously increases the farmer’s expected price and reduces price variance.

However, not all farmers have access to government buyers. As documented in the pre-

vious section, the probability of selling to a government buyer varies significantly by farmer

size, region, and crop. We do not endogenize the matching process between farmers and gov-

ernment buyers, but instead treat it as exogenously determined by farmer characteristics.

Specifically, we assume that the probability of finding a government buyer is given by

ρjrc = Pr(Zjrc = 1) = Φ(α0rc + α1rc · log(Aj)) (6)

where (α0rc, α1rc) are crop- and region-specific coefficients, and Aj is the total area of farmer

j. This specification, therefore, allows for heterogeneity in access to government buyers by

farmer size and region, enabling us to match the patterns observed in the data.

Note that while the (α0rc, α1rc) parameters are part of the policy vector G, they are

not directly observable. We think of them as reduced-form proxies for the institutional

environment governing procurement; they capture the joint impact of physical infrastructure,

administrative capacity, and frictions like transaction costs and information asymmetries.

This allows us to then simulate policy counterfactuals that alter this procurement landscape.

Risk Aversion

A central feature of our model is that farmers are not merely profit-maximizers; they are

also sensitive to the risk inherent in agricultural production. We formalize this by assuming

farmers make production decisions to trade off the mean and variance of total profits. This

trade-off is governed by a parameter, γj, which summarizes farmer j’s preference for risk.

We allow this preference to be heterogeneous across the population, reflecting the idea

that farmers differ in their underlying attitudes toward risk, perhaps due to differences in
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wealth, access to informal insurance, or other unobserved characteristics. To capture this

heterogeneity, we assume that each farmer’s risk aversion parameter is an independent draw

from a common distribution. Specifically, we assume

γj ∼ Exponential(θγ) (7)

where θγ is the mean of the exponential distribution from which γj is drawn.

Accounting for risk aversion is particularly important in the context of Indian agriculture.

The sector is dominated by small and marginal farmers who have limited capacity to absorb

adverse income shocks (D’Exelle & Verschoor, 2015; Donovan, 2021; Emerick et al., 2016).

This vulnerability is compounded by imperfect consumption credit markets, which make it

difficult to smooth consumption in the face of a poor harvest. Furthermore, with agriculture

being largely rain-fed, yields are subject to the vagaries of the monsoon, and formal risk-

mitigation instruments that could insulate farmers from such shocks are not widely used;

the penetration of crop insurance remains low, and while futures markets for agricultural

commodities exist, they see negligible direct participation from farmers and are not integrated

into policy instruments like crop insurance in the way they are in other contexts, such as the

United States. In such an environment, production choices become a primary mechanism

for managing risk, making risk aversion an important behavioral feature to model.

Fixed Costs

Despite having many crops in their choice sets, farmers in our data typically cultivate one

or two crops per season. To rationalize this limited diversification, we introduce a fixed cost

associated with cultivating a given set of crops. These fixed costs can be interpreted as the

cost of acquiring crop-specific knowledge, the indivisible cost of specialized equipment, or the

time and effort needed to establish relationships with new input suppliers or output buyers.

We model the fixed cost of planting a set of crops s for farmer j, denoted κjs, as being

additive and dependent on the farmer’s overall scale of operation, Aj. Specifically, we divide

farmers into two groups, small and large, based on the median farm size in the data. The
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fixed cost for a farmer in group g ∈ {small, large} is the sum of the crop-specific costs for

each crop in their chosen set

κjs =
∑
c∈s

κg(j),c (8)

where κg(j),c is the fixed cost for crop c for a farmer in size group g(j). By making diver-

sification costly, these fixed costs create a trade-off between the risk-reduction benefits of

planting more crops and the additional costs incurred in doing so, thereby helping the model

match the observed levels of crop diversification.

3.3 Demand: Households’ Consumption Choices

The demand side of our model captures how Indian households make consumption decisions

across agricultural commodities, accounting for the important role of government food trans-

fers through the Public Distribution System (PDS). In our framework, we treat the supply

(production) and demand (consumption) sides of the economy separately. Farmers maximize

expected utility over profits (as specified in equation (1)), while households maximize utility

from consumption subject to an exogenous budget constraint.22

Our assumption about the separability of production and consumption decisions stems

from data limitations; specifically, our datasets do not link farm production decisions to

household consumption budgets. Our production data (CCS and NSS 77th Round) provide

detailed information on farm profits but reveal nothing about the household’s total non-

farm income. Conversely, our consumption data (NSS 68th Round) capture total household

expenditure but do not disaggregate the income sources (farm vs. non-farm) that fund it.

Without this income link, we cannot model how realized farm profits endogenously determine

the household’s consumption budget. Attempting to impute these missing linkages would

require strong assumptions that may contaminate identification of supply-side parameters.

By maintaining separation, we achieve clean identification while noting that our estimated
22This approach is equivalent to assuming that farming households sell all of their output at market prices and

then make consumption decisions as pure consumers at some baseline income (i.e. the budget spent on consumption
does not change as agricultural profits change).
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parameters may absorb some effects of non-separation. For instance, our farmer-size-specific

fixed costs of growing particular crops may partly reflect consumption benefits from home

production, and this may show up as a lower effective fixed cost of growing staples for smaller

farmers who value food security. Similarly, our risk aversion parameters and markdown

distributions may capture not just preferences and market frictions, but also differences in

consumption-smoothing opportunities across farmers.

Household Preferences

Households are indexed by h and consume a bundle of agricultural goods qh and a numeraire

good ηh (representing all other consumption) to maximize their utility. This consumption

vector is the sum of purchases from the private market, qpvt
h , and transfers received from the

PDS, qpds
h . Thus, qh = qpvt

h + qpds
h .23

Unlike farmers, who make production decisions under price and yield uncertainty, house-

holds make their consumption choices after market prices have been realized. Consequently,

their problem is one of deterministic utility maximization, and therefore, we do not model

consumers as risk averse.

We specify a nested Cobb-Douglas utility function to reflect plausible substitution pat-

terns between different types of commodities. At the top level, we assume households dis-

tinguish between staple and non-staple goods, where staples are rice and wheat, which are

procured by the government and distributed through the PDS. Non-staple goods are all other

crops in our sample (e.g., maize, cotton, soybeans, etc.).

The overall utility for household h is given by

Uh (qh, ηh) = Uh,staple

(
qstaple
h

)αh,staple
· Uh,non-staple

(
qnon−staple
h , ηh

)1−αh,staple
(9)

where qstaple
h and qnon−staple

h are the consumption vectors of staple and non-staple crops,

respectively. The parameter αh,staple represents the household-specific preference for the
23As noted in footnote 12, PDS payments are negligible relative to market prices; we therefore treat these transfers

as free.
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staple composite good.

The staple group consists of rice and wheat, the two primary PDS commodities. The

sub-utility for staples is given by:

Uh,staple(q
staple
h ) = q

αh,rice

h,rice · q1−αh,rice

h,wheat (10)

The non-staple group includes all other agricultural commodities in our model (e.g.,

maize, cotton, soybeans) and the numeraire good, ηh. The sub-utility for this group is

Uh,non-staple(q
non−staple
h , ηh) = η

αη

h

∏
c∈non-staple

qαc
h,c (11)

where the expenditure shares are constrained to sum to one: αη +
∑

c∈non-staple αc = 1.

To account for differing consumption patterns across the income distribution, we allow

for preference heterogeneity. Specifically, the preference parameters for staples, αh,staple and

αh,rice, are modeled as functions of household income. For the non-staple nest, we assume

preferences are homogeneous across households. This is a simplifying assumption, motivated

in part by data limitations, as we do not observe detailed household-level consumption for

many non-staple industrial crops.

Budget Constraint

Household h is endowed with a cash income of yh. The household’s problem is to choose a

consumption bundle to maximize utility subject to its budget but the problem is complicated

by the fact that households also receive PDS transfers.

We assume that PDS transfers are fungible, meaning households treat them as a cash

transfer equal to the market value of the grains. This simplification is exact when transfers

are inframarginal—that is, when households supplement their PDS entitlements with pur-

chases from the private market. This condition holds for the majority of households in our

data; we apply the simplification to all households to maintain tractability.24

24Alternatively, we could brute force a solution to the demand system by setting qpvthc = max
{
0, qhc − qpdshc

}
and set
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This fungibility allows us to simplify the household’s problem significantly. We can model

the household as maximizing its utility subject to a single linear budget constraint based on

its effective income, ỹh, which is the sum of its cash income and the market value of its PDS

entitlements

ỹh = yh +
∑
c

Pc · qpdshc (12)

Treating this as the household’s budget constraint, the optimization problem can now be

written concisely as

max
qh,ηh

Uh (qh, ηh) s.t.
∑
c

Pc · qhc + ηh ≤ ỹh (13)

where the price of the numeraire good ηh is normalized to one, and Uh is given by (9).

PDS Entitlements

Finally, we specify how the quantity of PDS transfers, qpdshc , each household receives is deter-

mined. While official PDS entitlements are based on criteria like income and household size,

the actual quantities received can vary due to imperfect implementation and local adminis-

trative capacity.

Rather than modeling this complex allocation process, we take an empirical approach

that leverages our nationally representative consumption data. We calculate each household’s

share of the total observed PDS distribution for each staple crop. This share, ϕhc, is assumed

to be fixed for the household. The PDS quantity for crop c received by household h is thus

modeled as:

qpdshc = ϕhc ·QPDS
c (14)

where QPDS
c is the total quantity of crop c distributed through the PDS system (which, in

equilibrium, is equal to the total quantity of crop c procured by the government). These

the household budget constraint to
∑

c pc ·q
pvt
hc ≤ yh. However, this increases computational burden without changing

the results meaningfully, as in our counterfactuals, at the equilibrium price vector, most households consume all of
the transfers received from the food distribution program.
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household-specific shares, ϕhc, are calculated from our data and held constant across coun-

terfactual policy simulations.

3.4 Equilibrium

An equilibrium in this economy is characterized by a vector of national market prices,

P ∗ = {P ∗
c }c, that all agents take as given and which simultaneously clears the market

for each agricultural commodity. Given this price vector and government policies, G, farm-

ers make their production decisions to maximize expected utility, and households make their

consumption choices to maximize utility. For these individually optimal decisions to consti-

tute an equilibrium, the resulting aggregate quantities must satisfy two key conditions:

1. Overall Market Clearing: For each crop c, the total amount produced must equal

the total amount consumed:

QS
c (P

∗,G) = QD
c (P

∗,G) ∀c (15)

where QS
c (P

∗,G) is the aggregate supply, i.e., total expected output of crop c produced

by all farmers resulting from their optimal choices of crop portfolio, land allocation, and

input usage, and QD
c (P

∗,G) is the aggregate demand for crop c from all households.

2. Government Stockpile Clearing: The quantity of each crop procured by the gov-

ernment must equal the quantity it distributes to households via the PDS:

Qgovt
c (P ∗,G) = QPDS

c ∀c (16)

where Qgovt
c (P ∗,G) is the portion of aggregate supply that is sold to government buyers

and QPDS
c is the total quantity of crop c distributed to households through the Public

Distribution System (PDS).

If these two conditions hold, the private market for each crop also clears. The supply sold

on the private market, QS
c −Qgovt

c , will exactly equal the demand purchased on the private

market, QD
c −QPDS

c .
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We conclude by highlighting two simplifications in our equilibrium analysis. First, our

model represents a closed economy and abstracts from international trade. This is a rea-

sonable approximation for our study period, as, with the exception of rice, only a small

share of domestic production for the commodities we consider was traded internationally.25

Second, we do not model the government’s objective function. The goal of our model is

to evaluate the impact of given policies, not to explain their endogenous determinants. We

therefore treat policy levers as exogenous and focus entirely on modeling the production and

consumption decisions of farmers and households in response.

4 Estimation

In this section, we describe our estimation strategy for recovering the parameters of the

empirical model outlined above. We begin by describing the estimation of the supply-side of

the model, and then move on to the demand-side.

4.1 Supply

We estimate the supply-side of the model in three steps. In the first two steps, we estimate the

parameters governing the distribution of private prices (or markdowns) and the parameters

governing the yield function. In the final step, we estimate the remaining parameters.

The Distribution of Markdowns

The price offered to farmer j in region r by a private buyer is a fraction of the national

consumer price, given by P̃jr = µjr ·Pc. The term µjr is the farmer-specific markdown, which

we model as a random draw from a region-specific Beta distribution, µjrt ∼ Beta(αµ
r , β

µ
r ).

25In 2018-19, rice exports were ∼10% of domestic production. Other trade was negligible: rice imports (0%), wheat
exports (0.2%), and wheat imports (0%) (Government of India (2020)).
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The Beta distribution is a natural choice as its support is bounded between 0 and 1. Our

goal is to estimate the parameters (αµ
r , β

µ
r ) that characterize this distribution for each region.

Note that markdowns are assumed to be constant across crops. This is due to a lack

of national consumer price data for all crops in our sample; while such prices are readily

available for rice and wheat in household survey data, consumer prices for crops like cotton

and soybeans are not. We therefore use price data for only rice and wheat to estimate region-

specific markdown parameters. Moreover, note that while the minimum support price (MSP)

is set nationally, some states offer a bonus on top of the MSP, which creates a higher, state-

specific effective MSP. In our estimation, we use these state-specific MSPs as the relevant

price floor that censors the private price distribution.

The primary econometric challenge is that government procurement at the MSP creates

a selection problem. For farmers with access to government buyers, any private offer below

the MSP is rejected in favor of selling to the government. Consequently, these low offers

are unobserved, and the empirical distribution of private prices is censored from below. A

naive estimation using only the observed prices would yield biased parameters, systematically

understating the true magnitude of private market markdowns.

Our estimation strategy addresses this censoring and differs based on the level of procure-

ment in a region. For regions with negligible MSP procurement, the procedure is straight-

forward. We directly observe the complete distribution of markdowns and can estimate the

parameters (αµ
r , β

µ
r ) using the empirical mean and variance of markdowns, which we calculate

from farmer-level prices (NSS 77th round) and national consumer prices (NSS 68th round).

For regions with significant procurement, we employ a simulated method of moments

(SMM) procedure. This procedure finds parameters of the underlying markdown distribution

that, after accounting for reshuffling of mass induced by government procurement, best

replicate the moments of the observed price data. In particular, government procurement

moves some mass of farmers from below the MSP to the MSP as shown in Appendix Figure

D.1. Our simulation replicates this reshuffling to recover the true underlying parameters.

The procedure is as follows.
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For a given set of candidate parameters (αµ
r , β

µ
r ), we first simulate a distribution of private

price offers. We then censor this simulated distribution from below, randomly dropping price

realizations below the MSP until the share of observations below the MSP in the simulated

data matches the share of reported prices below the MSP in the data (NSS 77th round).

Next, to ensure we are comparing moments from unambiguously private sales, we drop from

both the real and simulated data all prices that fall at the MSP (or within a small bandwidth

around it). Finally, we compute the mean and variance of the remaining prices in both the

remaining real data and the remaining simulated data, and search for the parameters (αµ
r , β

µ
r )

that minimize the distance between these moments.

Identification of the markdown parameters comes from the shape restriction imposed by

the Beta distribution. The estimation procedure matches the moments of the observed pri-

vate price distribution after appropriately accounting for the reshuffling of mass induced by

the MSP and dropping the observations clustered at the MSP. By fitting the Beta distribu-

tion to these remaining data, we identify the parameters that govern the entire underlying

distribution. The estimated markdown distribution parameters are reported in Table 1.

Yield Function

In the second step of our supply-side estimation, we estimate the parameters of the yield

function specified in equation (4). Taking logarithms, the yield function becomes:

log(Yjc) = βl log(Ljc) + βk log(Kjc) + βf log(Fjc) + ωjc + εjc

where Ljc, Kjc, and Fjc are crop-specific input intensities (input per unit area) for labor, cap-

ital, and fertilizer, respectively. Our goal is to estimate the production elasticities (βl, βk, βf )

and the parameters governing the distributions of the two stochastic components: the farmer-

crop specific productivity, ωjc, and the idiosyncratic yield shock, εjc.26

26We apply a series of filters to the CCS data that we use to estimate the yield function. These filters are outlined
in Appendix C.1. Further, given the Cobb-Douglas structure of the yield function, we estimate the yield function
parameters using observations with positive input intensities. In the filtered data, ≈ 90% of observations have positive
input intensities.
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We assume the yield shock is crop-specific and normally distributed as follows:

εjc ∼ N(−σ2
εc/2, σ

2
εc) (17)

Thus, output risk varies systematically across crops. The farmer-crop productivity term is

also assumed to be normally distributed as follows:

ωjc ∼ N(µωrc, σ
2
ωc) (18)

where the mean varies by region and crop. To maintain tractability and reduce the number

of parameters to estimate, we decompose the mean as µωrc = µωr + µωc − σ2
ωc/2, where µωr

and µωc are region- and crop-specific means, respectively.

Our yield function estimation departs from the control function methods commonly used

in the productivity literature (Ackerberg, Caves, & Frazer, 2015; Gandhi, Navarro, & Rivers,

2020; Levinsohn & Petrin, 2003; Olley & Pakes, 1996). These methods rely on inverting the

input demand function to recover unobserved productivity, which requires a monotonic re-

lationship between productivity and input use. However, this monotonicity assumption fails

when farmers have mean-variance utility and productivity enters as a Hicks-neutral shifter.

Higher productivity increases both expected output and output variance, creating opposing

effects on input demand through the mean-variance utility framework. Risk-averse farmers

may reduce input use in response to higher productivity if the variance effect dominates

which violates the monotonicity required for control function approaches.

Given these limitations, we employ a fixed effects approach using our panel data. We

estimate the production function by regressing log yield on log input intensities while includ-

ing farmer-crop fixed effects. This specification identifies the elasticity parameters βl, βk, βf

from within farmer-crop variation over time, using how changes in a farmer’s input use for

a specific crop correlate with changes in yield across years. The farmer-crop fixed effects

absorb the time-invariant productivity term ωjc, thereby addressing the endogeneity aris-

ing from farmers’ knowledge of their own productivity when making input decisions. The

estimated yield function parameters are reported in Table 2.

The residuals from this fixed-effects regression are the realized yield shocks, εjc. Be-
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cause these shocks are realized after production decisions are made, they are uncorrelated

with input choices and free from selection bias. We therefore use these residuals to directly

estimate the crop-specific variances of the yield shocks, σ2
εc, via maximum likelihood. How-

ever, the estimated fixed effects, ω̂jc, cannot be used to directly estimate the parameters of

the productivity distribution because they are only observed for farmers who cultivate crop

c, meaning its distribution reflects a selected sample. As such, we defer estimation of the

productivity distribution parameters to the final step of our estimation procedure, which

explicitly accounts for this selection.

Remaining Supply-Side Parameters

We next estimate the remaining supply-side parameters. These include: (i) the parameter θγ

governing the distribution of risk aversion, (ii) the parameters {α0rc, α1rc}r,c which determine

the likelihood of finding a government buyer, (iii) the parameters {{µωr, }r , {µωc, σωc}c}

characterizing the distribution of farmer-crop productivity, and (iv) the fixed costs {κg,c}g,c
of planting crops.27

All of these parameters jointly affect crop choice decisions and cannot easily be isolated.

For example, a farmer’s decision to plant rice depends on their risk aversion, the probability

they can sell their rice to the government at the MSP, their inherent productivity in growing

rice, and the fixed cost of entering rice cultivation. Thus, to identify the fixed costs, for

example, one needs to know the other parameters. Relatedly, because we only observe

outcomes for the crops farmers choose to plant, we also need to account for selection when

estimating these parameters.

We address these challenges by employing a full solution approach where, given a guess of

parameters, we solve the production problem for each farmer in our sample, and minimize the

difference between observed and simulated moments (McFadden, 1989; Pakes, 1986; Pakes &

Pollard, 1989). This is computationally challenging because the space of parameters we need
27We estimate the parameters governing MSP procurement, {α0rc, α1rc}r,c, for state-crop combinations with sig-

nificant procurement and set procurement to zero for the rest. A state-crop has significant procurement if at least
2% of the farmers in the state grow that crop and sell it to the government.
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to search over is high-dimensional. To make this high-dimensional search computationally

feasible, we use a nested algorithm that proceeds as follows. In the outer loop, we search

over the space of the main behavioral and distributional parameters: risk aversion, gov-

ernment procurement access, and productivity distribution. Then, for each guess of these

outer-loop parameters, we solve for the optimal fixed costs in an inner loop. With these

conditionally estimated fixed costs, we compare the simulated moments with their empirical

counterparts and stop once the difference is below a threshold; otherwise, we update the

outer-loop parameters and repeat the process. We provide further details in Appendix D.

The inner loop estimates the crop- and farmer size-group-specific fixed costs, κg,c, by

matching the model’s predicted shares of crop portfolios to those observed in the data. For

a given set of outer-loop parameters, we compute the gross expected utility (exclusive of

fixed costs) for every farmer and every feasible crop portfolio.28 The inner loop then finds

the vector of fixed costs that, when subtracted from these utilities, best rationalizes the

observed portfolio choices. The level of crop-specific fixed costs is identified by the additive

structure imposed on the fixed cost of a set of crops. To see this, consider two crops that

can be in three possible portfolios: {c1}, {c2}, and {c1, c2}. If we increase the fixed cost

associated with c1 and c2 by ∆, the relative attractiveness of {c1} and {c2} will remain the

same. However, {c1, c2} will become relatively less attractive as costs go up by 2∆ and

farmers will switch out of it. Thus, simultaneously matching single-crop and multi-crop

shares allows us to identify the level of fixed cost for each crop.

In the outer loop, we estimate parameters related to risk aversion, government procure-

ment access, and productivity distribution.

The parameter governing the distribution of risk aversion, θγ, is identified from farmers’

input use decisions, specifically, their use of fertilizers. Risk aversion directly affects this

intensive margin of production through the mean-variance trade-off in equation (3). Since

fertilizer is a variable input that increases both expected yield and yield variance, risk-averse

farmers will use less fertilizer than risk-neutral farmers, all else equal. We therefore include
28In practice, we limit the possible sets of crops to the 30 most common portfolios observed in the data. Allowing

for all possible portfolios is straightforward but computationally expensive.
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the average share of revenue spent on fertilizer as a moment in our estimation.29

The parameters {α0rc, α1rc}r,c that determine the probability of finding a government

buyer are identified from observed patterns of government sales. We match two sets of

moments: (i) the unconditional share of farmers selling to the government by region and

crop, and (ii) how these shares vary by farm size groups (small vs. large). The unconditional

nature of these moments is crucial: we compute the probability that a farmer sells crop c

to the government, not the probability conditional on growing that crop. This distinction

matters because MSP policies create selection: government procurement incentivizes farmers

to grow MSP crops, so the conditional probability of selling rice to the government (among

those who grew rice) overstates true accessibility.

Finally, in the full solution approach, we also estimate the parameters characterizing the

distribution of farmer-crop productivity, {{µωr, }r , {µωc, σωc}c}. These are identified from

the variation in yield observed in the data. We match three sets of moments: (i) average

yield by crop, (ii) average yield by region, and (iii) the standard deviation of yield by crop.

A key challenge is that we only observe yields for farmers who choose to grow each crop

— a selected sample with likely higher average productivity than the population average.

Our approach addresses this selection: by simulating the full model, we ensure that farmers

in the simulated data also select into crops based on productivity (and other parameters),

just as they do in the real data. Matching these selected moments allows us to recover

the parameters of interest. We report the estimated supply-side parameters in Tables 2

through 6. The risk aversion parameter, along with yield function elasticities, is presented

in Table 2. Fixed costs of cultivation and crop-specific yield shock variances are given in

Table 3. Parameters governing access to government procurement are in Table 4. Finally, the

parameters characterizing the farmer-crop productivity distribution are reported in Table 5

for crop-specific components and in Table 6 for region-specific components.
29This identification strategy follows Donovan (2021) that links risk attitudes to intermediate input use. In their

framework, farmers facing uninsurable shocks reduce their use of inputs to limit their exposure to low consumption
outcomes following a bad productivity shock. While our setup is different, the intuition is the same: input intensity
is a relevant empirical moment that is sensitive to farmers’ risk attitudes. In Appendix D.4, we provide further
evidence to support this identification strategy by demonstrating the sensitivity of fertilizer expenditure shares to
perturbations in the risk aversion parameter.
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4.2 Demand

We calibrate the parameters of the household demand system using nationally representative

consumption data from the 68th round of the National Sample Survey (NSS). The calibration

leverages the properties of the nested Cobb-Douglas utility function specified in equations

(9) to (11), where preference parameters correspond to expenditure shares.

First, we calibrate the preference parameters for the staple goods nest, αh,staple and αh,rice.

To capture heterogeneity in consumption patterns, we allow these parameters to vary across

household income deciles. As such, we split households into deciles based on their per-capita

consumption expenditure, which serves as a proxy for income.30 For each household h in

decile d, we calculate their effective income, ỹh, as the sum of their cash expenditure and the

market value of their PDS entitlements. The preference for the staple composite good for

households in that decile, αd(h),staple, is then calculated as the total expenditure on staples

divided by the total effective income for all households in the decile:

αd,staple =

∑
h∈d(price · qh,rice + pwheat · qh,wheat)∑

h∈d ỹh

where qh,c represents the total consumption of crop c by household h (from both private

markets and PDS) and pc is the private market price. Similarly, the preference for rice

within the staple sub-utility, αd,rice, is calibrated as the total expenditure on rice divided by

the total expenditure on staples for households in that decile:

αd,rice =

∑
h∈d(price · qh,rice)∑

h∈d(price · qh,rice + pwheat · qh,wheat)

Next, we calibrate the preference parameters for the non-staple goods, {αc}c∈non-staple,

and the numeraire good, αη, which are assumed to be homogeneous across all households.

Directly calculating expenditure shares from the household survey is not possible for all non-

staple crops, particularly industrial crops like cotton or soybeans, as their consumer prices

are not observed. We therefore adopt an indirect approach. First, we infer the national
30Since PDS transfers involve small copayments rather than being entirely free, we adjust household income by

removing these nominal PDS expenditures to obtain baseline income yh and use this to define income deciles and in
subsequent analysis.
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consumer price for each non-staple crop by taking the average price received by farmers

(from the NSS 77th round) and adjusting it upward using our previously estimated region-

specific markdown distributions (see Appendix D.5). Second, under the closed economy

assumption of our model, we set total expenditure on each crop equal to the total value of

its production, which we calculate by multiplying the inferred national consumer price by the

total quantity produced nationally. Finally, the preference parameter αc for each non-staple

crop is its share of the total value of the non-staple consumption bundle. The share of the

numeraire good, αη, is the residual which ensures that the shares within the non-staple nest

sum to one. The calibrated demand parameters are reported in Figure 5.

4.3 Model Fit

We evaluate how well the model matches the data by comparing model predictions to ob-

served outcomes. On the supply-side, to generate these predictions, we solve the optimiza-

tion problem for every farmer in our sample using the estimated parameters and simulated

productivity draws, holding consumer prices fixed. Figure 6b compares model-predicted ag-

gregate output shares for each crop to observed shares. The model assigns a large share of

output to rice and wheat, similar to the data, and it also captures the relative shares of other

major crops reasonably well. Figure 6a shows that the model also fits farmers’ crop choices:

the predicted fraction of farmers growing each crop is close to what we see in the data.

On the demand side, Figure 7a shows that the model tracks the observed share of spending

on rice and wheat across the income distribution. As income rises, both the data and the

model show a smaller share of total spending going to these staple grains. Within the staples

bundle, Figure 7b shows that the model captures the relative preference for rice versus wheat

across income deciles. Overall, the model provides a close fit to both supply and demand

patterns in the data.
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5 Counterfactual Analysis

Having estimated the parameters of our structural model, we now use it to evaluate the effects

of changing the scale and design of existing agricultural policies. For each counterfactual,

we keep the same sample of farmers from NSS 77 and households from NSS 68 that we

used for estimation and solve for the new equilibrium as follows. We begin with a guess

of national consumer prices and solve for optimal crop and input choices for each farmer

and the optimal consumption bundles for each household. We then aggregate supply and

demand for each crop and update our price vector until market-clearing conditions are met.

Additional details are in Appendix F.1.

To assess the impact of counterfactual policies, we simulate a baseline equilibrium under

the existing policy environment and use it as a benchmark. For farmers, we measure welfare

impacts by calculating the change in net utility (Vjs), expressed in rupees, relative to this

baseline. For households, welfare changes are assessed using compensating variation (CV),

defined as the additional income needed to maintain baseline utility under the new prices

and PDS transfers.31

We present distributional effects across farmer size categories and household income lev-

els, as well as aggregate impacts on welfare and government expenditure. Since we do not

explicitly model the agricultural labor market and treat wages as exogenous, our analysis

excludes welfare impacts for landless laborers, a significant portion of the agricultural work-

force.32 However, we report changes in total labor demand, which may be used to interpret

partial equilibrium outcomes for wage earners.

Policy experiments. We consider four counterfactuals. The first two counterfactuals

change the scale of existing interventions: (1) lower access to government procurement at

minimum support prices (MSP) and (2) lower fertilizer subsidies. The final two counter-
31In the figures and tables below, we report −CV so a value less than zero denotes a welfare loss and a value greater

than zero denotes a welfare gain.
32We thank Mark Rosenzweig for emphasizing this caveat.
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factuals change the design of existing interventions: (3) targeted fertilizer subsidies and (4)

equal access to MSP for all farmers.

Under the first counterfactual, we uniformly reduce the probability of access to govern-

ment buyers such that the average farmer in each state has a 50% lower chance of finding a

government buyer, holding MSP levels fixed. In the second counterfactual, we increase the

composite fertilizer price by 20% for all farmers.33 In the third counterfactual, under tar-

geted subsidies, we apply the 20% fertilizer price increase only to farmers with landholdings

above 0.65 hectares; smaller farmers continue to face the subsidized price.34 In the fourth

counterfactual, we equalize access to MSP for all farmers in states with non-negligible pro-

curement by assigning a common access probability (separately for rice and wheat) chosen

to match baseline total procurement.35 Thus, the total quantity of rice and wheat procured

by the government is held fixed.36

5.1 Aggregate Impacts: Prices and Quantities

We begin by describing the impact on market-level prices and quantities. Figure 8 presents

the results for rice and wheat: panel 8a reports percentage changes in prices and panel 8b

reports percentage changes in total output, each relative to the simulated baseline for the

four counterfactuals introduced above. For non-staple crops, Appendix Figure F.3 reports

analogous outcomes.

Under lower access to MSP, equilibrium rice and wheat output falls slightly (by about

0.5%), yet the composition of sales changes dramatically. As shown in Figure 9, government

procurement collapses (-46% for rice, -30% for wheat), while private market sales surge
33We approximate the average subsidy on the composite fertilizer input at about 50%, so the unsubsidized price is

twice the observed price used in the model; the observed price is a weighted average of nutrient prices (N, P, K) in
the cost of cultivation surveys.

34This is the unweighted median of landholdings in our sample. The weighted median is even lower at 0.47 hectares.
35For each staple (rice and wheat), restricting to states where at least 2% of farmers report selling to the government,

we search over a single common access probability. For a given guess, we compute the equilibrium, compute total
procurement, and update the guess until model-implied procurement matches the baseline. Farmers in states without
meaningful procurement in the baseline remain without access; we do not open new procurement states. The resulting
equal-access probabilities are 26.8% for rice and 34.9% for wheat.

36Note that farmers in states without much procurement in the baseline continue to not have access to MSP.
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(+3.4% and +4.3%, respectively). On the supply side, reduced MSP access triggers two

opposing effects: higher price risk leads farmers to contract total output, but because fewer

farmers can sell to the government, a larger share of this output flows to private buyers. In

our simulations, private supply expands on net. On the demand side, lower procurement

means lower PDS transfers, which also triggers two opposing effects: the loss of transfer

income exerts downward pressure on demand, while households must also replace lost PDS

grains with private market purchases. In our simulations, the replacement effect dominates,

so private demand also expands. With both private supply and private demand rising,

equilibrium prices change by +0.05% for rice and -0.1% for wheat.

The direction of the net price change varies by crop. As shown in Appendix Figure F.5,

reducing MSP access generates a larger increase in price risk for rice than for wheat. This is

because rice is more likely to be grown in states with more dispersed markdown distributions

(greater variance in private buyer offers). Thus lower MSP access induces a stronger supply

contraction for rice which tempers the surge in private market supply relative to demand

and pushes prices up slightly. For wheat, the weaker supply response means private supply

outpaces demand, pushing prices down slightly.

In the second counterfactual, we lower fertilizer subsidies by increasing the observed price

by 20%. Since a key input is now more expensive, the agricultural supply curve shifts inward,

raising market prices and reducing overall output. When we lower fertilizer subsidies for all

farmers, the price of rice and wheat goes up by approximately 1.8%, while total output

falls by about 2%. Prices for all other crops also increase, accompanied by declines in their

outputs. However, when targeting the subsidy reduction only to larger farmers, as in the

third counterfactual, these supply-side impacts are dampened: rice and wheat prices still rise,

but by less (around 1.2%) and total production decreases by about 1.3% for both staples.

Non-staple crops similarly experience smaller price and quantity movements.

For the two fertilizer subsidy counterfactuals (uniform and targeted reductions), the

contraction in agricultural supply generates a secondary feedback loop through the demand
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side. As output falls, government procurement declines by about 17% (Figure 9a).37 This

reduces the quantity of grain available for the public distribution system (PDS). As discussed

above, lower PDS transfers trigger two opposing forces: the loss of transfer income exerts

downward pressure on private demand, while the need to replace PDS grains pushes private

demand outward. While we do not decompose these specific channels here, the aggregate

market outcomes are primarily driven by the initial inward shift in the supply curve. Under

the targeted subsidy policy, these demand-side feedbacks are more muted; because more

than half of all farmers continue to receive subsidies, the aggregate supply contraction—and

the associated fall in procurement—is smaller than under the uniform subsidy cut.

In the final counterfactual, all farmers in states with non-negligible procurement in the

baseline are equally likely to find a government buyer. These common access probabilities

(26.8% for rice, 34.9% for wheat) ensure that total government procurement matches the

baseline. This shuts down the demand-side feedback channel through procurement and PDS

transfers while redistributing MSP access from larger to smaller farmers. Smaller farmers

find it more attractive to grow rice and wheat and larger farmers find it less attractive. As

above, since price risk for rice is higher, the net impact is a reduction in rice output (about

−0.1%) and an increase in its price (about +0.1%). On the other hand, for wheat, output

goes up (about +0.05%) and price goes down (about −0.08%).

Before we wrap up our discussion on aggregate impacts, note that reducing access to MSP

procurement not only decreases procurement volumes but also lowers fertilizer use as shown

in Appendix Figures F.8b and F.9. In other words, government procurement at MSP incen-

tivizes farmers to use more fertilizer, similar to direct fertilizer subsidies. Conversely, when

fertilizer subsidies are scaled back, agricultural supply contracts, leading to reduced procure-

ment and consequently lower PDS transfers (Figure 9a). These interactions highlight that

agricultural policy reforms in India should account for complementarities across interven-

tions; any evaluation of changes to a particular policy is incomplete without understanding

how it interacts with other existing policies.
37Farmers still match with government buyers with the same probability as before but now they show up with lower

quantities of rice and wheat. The underlying assumption is that the government does not change its procurement
strategy to compensate for the lower supply.

40



Finally, we turn to the impact on agricultural labor demand to offer suggestive evidence

on welfare effects for landless laborers. As shown in Appendix Figure F.8a, the decline

in labor demand is most pronounced under the first counterfactual (lower MSP access),

where labor demand falls by 0.7% as farmers contract production in response to greater

price risk. For the remaining counterfactuals, the effect is much smaller, with labor demand

falling by less than 0.2%. The smallest decline (0.15%) occurs under the targeted fertilizer

subsidy. These results suggest that policy changes affecting production incentives have non-

trivial implications for agricultural labor, although a complete welfare analysis would require

modeling wage adjustments.

5.2 Distributional Impacts

The aggregate outcomes presented above result from choices made by heterogeneous agents,

and we now zoom in on these agents, producers and consumers, and quantify the distri-

butional impacts of the four counterfactual interventions above. We begin by discussing

impacts on producers across the farm size distribution, then turn to impacts on consumers

across the income distribution.

Impact on producers

Figure 10 shows the welfare impacts on producers across the farm size distribution. Panel 10a

reports the change in net utility in rupees and panel 10b shows this change as a percentage

of average baseline utility for each farmer size decile. In the first counterfactual, which

reduces access to MSP, all farmers are worse off, with larger farmers experiencing the largest

welfare losses. This is because larger farmers have greater baseline access to government

buyers (Appendix Figure F.4) and thus experience the greatest increase in price risk when

access is lowered. For the largest decile of farmers, welfare falls by about 1% relative to

baseline utility. Though seemingly modest, note that this loss represents a national average

across all farmers, the majority of whom have no access to MSP procurement even at baseline.
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Moreover, these effects account for farmers’ ability to adapt by adjusting their crop portfolios

and input choices, which mitigates the welfare impact relative to a setting where cropping

decisions are held fixed. In Appendix Figures F.6 and F.7, we show that farmers do indeed

make these intensive and extensive margin adjustments.

The first counterfactual changed two things simultaneously: farmers’ access to MSP and

households’ PDS transfers. To disentangle the direct impact of reduced MSP access from

the indirect effect of lower PDS transfers, we run an additional policy experiment. Here,

we isolate the demand channel by holding procurement fixed while allocating PDS grains

randomly across households rather than targeting the poor (see Appendix F.2). Because

lower-income households have a high marginal propensity to consume staples, this redistri-

bution generates a negative aggregate demand shock that depresses private market prices.

Small farmers, who rely on private sales, suffer welfare losses, while large farmers remain

insulated by their MSP access. The contrast with the first counterfactual—where large farm-

ers lost the most—confirms that those losses were driven by the removal of the MSP price

floor, not by the contraction in consumer demand.

In the second counterfactual, uniformly raising fertilizer prices by 20% has a minimal

impact on farmer welfare. While larger farmers, who use more fertilizer, are the most

affected, even their welfare declines by at most 0.4%, as higher input costs are largely offset

by the resulting increase in equilibrium output prices. However, the welfare effects are

more pronounced under the third counterfactual which increases fertilizer prices for larger

farmers. Now, the largest farmers lose about 1.2%, which is their largest loss in any scenario

we consider. This is because they face higher input costs without the large output price

increase observed under the second counterfactual. In contrast, small and medium-sized

farmers (with landholdings below 0.65 hectares) benefit, with the smallest decile gaining

nearly 3% in welfare. These farmers continue to receive subsidized fertilizer while also

benefiting from higher market prices.

Under the fourth counterfactual, equalizing MSP access across farmers redistributes wel-

fare from the largest farmers to smaller ones. The top decile loses about 0.7% in welfare as
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their access probability falls, while most other farmers gain, with the smallest decile seeing

a welfare increase of about 0.7%.

Impact on consumers

We now turn to consumers. Figure 11 presents welfare impacts on consumers across the

income distribution. Consistent with our sign convention, we plot −CV so negative values

denote losses. Panel 11a reports per-capita CV in rupees by income decile, while Panel 11b

scales CV by average income in each decile.38

Under the first counterfactual, which reduces MSP access, all households are worse off,

but lower-income households bear substantially larger welfare losses. For the poorest decile,

welfare falls by about 1.2% of average income, compared to negligible losses for higher-income

households. This pattern reflects the differential impact of reduced PDS transfers: lower-

income households, who rely more on subsidized food grains, experience a larger decline in

effective income when procurement, and consequently PDS distribution, contracts.

In the second counterfactual (uniform 20% fertilizer price increase), all households are

worse off as equilibrium prices rise for all crops. Interestingly, when measured in levels (panel

11a), higher-income households appear more adversely affected. This occurs because the PDS

remains operational when fertilizer prices rise: lower-income households continue to receive

PDS transfers that insulate a large portion of their consumption from market price increases

(although these transfers are lower than baseline). In contrast, higher-income households

receive little or no PDS support and are fully exposed to price increases. Thus, the PDS

program dampens the adverse impact of fertilizer price increase on lower-income households.

In proportional terms (panel 11b), however, the pattern reverses as expected: higher-income

households lose less as a share of their income since they allocate a smaller fraction of their

budgets to food. Under the third counterfactual (targeted fertilizer subsidies), welfare effects
38Households are ranked by per-capita monthly consumption expenditure (MPCE) from the NSS 68th round, which

we use as a proxy for income. Consumption expenditure includes the imputed value of goods produced and consumed
at home (e.g., own-produced food) and other in-kind items. We also use MPCE to normalize Panel 11b: values there
are CV divided by the decile-specific average MPCE for each income decile.
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are qualitatively similar but more muted, since equilibrium price increases are smaller.

Finally, equalizing MSP access in the fourth counterfactual has minimal impact on all

households (approximately 0%). By construction, total procurement and therefore PDS

transfers remain unchanged, and equilibrium prices of rice and wheat barely move, leaving

consumer welfare largely unaffected across the income distribution.

5.3 Net impacts

In this section, we present the net change in welfare under each counterfactual. These calcu-

lations combine the impacts on producers, consumers, and government expenditure.39 Figure

12 summarizes our findings and presents all values normalized by total baseline government

spending on fertilizer subsidies and MSP procurement.

First, we consider the impact on the government budget. Savings are largest under the

second counterfactual (uniform fertilizer price increase), amounting to about 24% of baseline

expenditure. The targeted subsidy reform (counterfactual 3) also yields significant savings

of about 18%. Reducing MSP access (counterfactual 1) saves about 15%, while equalizing

access (counterfactual 4) only saves about 2%.

These budgetary savings, however, come largely at the expense of consumer welfare. The

welfare loss for consumers is equivalent to 21% of baseline government spending when MSP

access is reduced, and 23% and 17% for uniform and targeted fertilizer price increases, re-

spectively. For farmers, the aggregate impacts are much smaller, as prices adjust to partially

offset policy changes and most farmers lack access to MSP even at baseline. The largest

aggregate loss for farmers occurs when MSP access is reduced (-1.2%), while the smallest

loss occurs when it is equalized (-0.3%).

Summing these components gives the net change in welfare. Since we exclude landless

laborers, these results should be interpreted with caution. We find that reducing MSP
39Our welfare calculations do not include the impact on landless laborers. Since, under all counterfactuals, demand

for agricultural labor falls, our estimates likely represent an upper bound on net welfare gains.
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access is welfare-reducing: the combined loss for farmers and consumers exceeds government

savings, resulting in a net welfare loss of about 7% of baseline government expenditure.

The other three scenarios generate net welfare gains. The reforms to fertilizer subsidies,

both uniform and targeted, yield a modest net welfare gain of about 0.3%. The largest net

welfare gain, approximately 1.3% of baseline spending, comes from equalizing MSP access.

5.4 Discussion

Our counterfactual analysis offers several insights into agricultural policy reform in India.

First, the interventions are directly and deeply interconnected. For example, output price

supports (MSP) and input subsidies are complementary in driving fertilizer demand; the

existence of MSP dampens the impact that a fertilizer subsidy cut would have on fertilizer

use. Our finding that reducing MSP access directly lowers fertilizer demand confirms this

link. In the other direction, scaling back fertilizer subsidies contracts agricultural supply,

which then reduces procurement and PDS transfers. These interactions show that changes

to a single policy can affect incidence and incentives directly targeted by other policies.

Second, the counterfactual policies generate significant distributional consequences across

the farm size distribution. The largest farmers are worse off under all counterfactuals, partic-

ularly when MSP access is reduced and fertilizer subsidies are targeted. In contrast, smaller

farmers face minimal negative impacts and gain significantly from policies that are better

targeted or more equitable. Note, however, that even farmers in our largest decile are small

by global standards: their average landholding is about 6 acres (Appendix Figure F.10).

Thus, while our results highlight meaningful distributional differences across the farm size

distribution, the trade-offs occur among relatively small-scale producers.

Third, our analysis reveals how the PDS mediates the welfare impacts of upstream agri-

cultural policies on consumers. When fertilizer prices rise, the PDS partially insulates lower-

income households from food price increases, even as the program itself contracts due to

lower procurement. This protective function means that reforms affecting procurement have
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large impacts on the poor, while impacts of reforms affecting input prices are partially miti-

gated for PDS beneficiaries. This finding also underscores the importance of jointly modeling

policies that affect food prices and food transfers; studying these policies in isolation may

bias our estimates of welfare changes for the poor and mischaracterize how welfare changes

distribute across income groups.

Fourth, our analysis highlights a novel linkage between the design of consumer safety nets

and producer welfare: targeting food transfers to lower-income households acts as an indirect

price support for small farmers. As shown in Appendix F.2, redistributing PDS transfers

away from lower-income households generates a negative demand shock in the aggregate that

depresses private market prices. While large farmers can retreat to the safety of government

procurement, small farmers, who are dependent on private markets, bear the full incidence

of this price decline. This suggests that the political economy of PDS targeting extends

beyond consumer welfare; directing transfers to the poor generates equilibrium spillovers

that support the incomes of the smallest and most vulnerable producers.

Finally, while our results are specific to India, the policies we study are not; govern-

ments throughout the developing world rely on some combination of input subsidies, output

price supports, and food aid. Moreover, the production environment we model—small-

scale, risk-averse farmers making crop and input decisions under yield and price uncer-

tainty—characterizes agriculture across much of the developing world. Our central finding,

that these policies interact in equilibrium, therefore applies broadly, while our framework

provides a template for analyzing bundled agricultural interventions in other contexts.

Several caveats merit emphasis. Our analysis excludes landless laborers, who comprise

a significant portion of the agricultural workforce. Given that labor demand falls under all

counterfactuals (by 0.15-0.7%), this omission likely leads us to overstate net welfare gains.

Additionally, while equalizing MSP access yields the largest net welfare gain (1.3% of base-

line spending), we do not account for the operational costs involved. If the operational costs

of reaching smaller farmers substantially exceed those for current procurement operations,

these gains could diminish or reverse. Finally, we hold private market markdowns constant,
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although one expects intermediaries to adjust their behavior in response to changes in pro-

curement policies. However, given the minimal equilibrium price changes under MSP-related

counterfactuals, this assumption likely does not significantly affect our conclusions.

6 Conclusion

This paper studies the distributional effects of India’s major agricultural interventions: pro-

curement at minimum support prices (MSP), food aid through the public distribution system

(PDS), and fertilizer subsidies. We develop a structural model linking household demand for

agricultural commodities to farmers’ crop and input choices under risk and in response to

government interventions, allowing for rich heterogeneity in observed and unobserved farmer

characteristics. Our equilibrium model also captures how these interventions interact with

private markets to clear residual supply and demand and allows us to quantify how these

policies shape outcomes across the farm-size and consumer income distributions.

Our analyses point to meaningful differences in who benefits from each policy. While MSP

procurement insures farmers against downside price risk, these benefits mostly reach larger

farmers and those in certain regions with historically high procurement. Input subsidies lower

production costs for all farmers, but because larger farmers use more fertilizer, they capture

more of this support. For smaller farmers, these lower costs are largely offset by lower market

prices for food resulting from greater aggregate supply. On the demand side, both fertilizer

subsidies and PDS transfers improve welfare for lower-income households. PDS transfers,

in particular, support aggregate demand for staples by providing food directly to the poor.

The resulting income effect pushes private market prices up and helps small farmers (who

are more likely to sell in private markets) earn higher prices for staples.

Taken together, these findings underscore how deeply the policies are intertwined. A

change in one policy, such as procurement or subsidies, affects incentives and impacts of

other policies. Therefore, evaluating a single program in isolation can lead to misleading

conclusions about who benefits and by how much. Our analyses also show that improving
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the design of these programs yields better outcomes than simply scaling them back, implying

meaningful reform is not just a choice between free markets and state intervention.

We conclude with caveats that point toward future research. First, our framework ab-

stracts from labor markets, precluding an analysis of how interventions affect agricultural

wages and the welfare of landless laborers, who are among the most vulnerable in the rural

economy. Incorporating labor markets would give a more complete picture of welfare im-

pacts for the rural poor. Second, we treat private trader margins as given. Future analysis

could endogenize these markdowns to capture how intermediary market power adjusts in

response to procurement. Finally, our analysis is static. By shoring up income through price

supports and subsidies, the current regime may keep unproductive farmers in agriculture,

potentially slowing structural transformation. Adding dynamics would allow us to weigh

these long-term consequences against the immediate distributional gains documented here.
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Figure 1: Government Programs and their Beneficiaries Along the Income Distribution

(a) Sales to Government Buyers

(log) Farmer Size (in hectares)
−2 −1 0 1

S
ol

d 
to

 G
ov

er
nm

en
t

0.0

0.1

0.2

0.3

Rice
Wheat

(b) Share of Consumption From PDS

Household Income Percentile
0 20 40 60 80 100

Q
ua

nt
ity

 fr
om

 P
D

S
 a

s 
%

of
 T

ot
al

 C
on

su
m

pt
io

n

0%

10%

20%

30%

40%

50%

60%

70%
Rice
Wheat

Notes. The left panel shows binned means of an indicator variable denoting whether sales were made to a government
buyer against (log) total farm size of the reporting household (in hectares). These data are conditional on selling
non-zero amount of output in the market to anyone. The right panel shows binned means of the share of monthly
consumption of rice and wheat obtained through PDS against household income percentile, computed using per capita
monthly expenditure as observed in the 68th round of the NSS Consumer Expenditure Survey, 2011-2012.

Figure 2: Government-Procurement and Access to Minimum Support Prices (MSP)
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(b) Sales to Government Buyers by State
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Notes. The left panel shows the distribution of prices of rice and wheat received by farmers relative to the minimum
support price (MSP) for that season. The right panel shows the share of rice and wheat cultivators in a state who
sold output to government buyers. Source: 77th round of the National Sample Survey (NSS) conducted in 2019.
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Figure 3: Impact of Fertilizer Prices on Production Decisions and Output

(a) Fertilizers Prices
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(c) (log) Quantity of Rice Produced

2004 2006 2008 2010 2012 2014

(lo
g)

 Q
ua

nt
ity

 o
f R

ic
e

−0.20

−0.15

−0.10

−0.05

0.00

0.05

(d) (log) Output Index (All Crops)

2004 2006 2008 2010 2012 2014

(lo
g)

 O
ut

pu
t I

nd
ex

−0.20

−0.15

−0.10

−0.05

0.00

0.05

Notes. In the top-left panel, we plot (weighted) average reported prices of fertilizer nutrients nitrogen (N), phosphorus
(P), and potassium (K) in the Cost of Cultivation Surveys. In the top-right panel we show estimated coefficients
from an event-study regression using district-level ICRISAT panel data. The dependent variable is (log) reported
consumption of fertilizer nutrients (N, P, or K) at the district-level. The controls are year dummies (excluding 2009)
and district fixed effects. In the bottom-left panel, we plot the estimated coefficients from a difference-in-differences
specification with a continuous treatment variable using district-level ICRISAT panel data. Treatment intensity is
defined as the per-unit area consumption of fertilizer nutrients P and K (aggregated using nutrient prices as weights)
in the period 2004-2009, before prices of these nutrients increased sharply. The dependent variable is (log) output of
rice at the district-level. The controls are year and district fixed effects. The bottom-right panel repeats this exercise
using a (log) output index at the district-level as the dependent variable. The output index is constructed using output
of all crops grown in that district aggregated using national median prices of those crops in the period 2004-2009.
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Figure 4: Model Timeline & Overview

Govt. announces
policy

Farmers choose
portfolio of crops

Output shocks
realized

Govt. buyer present?

MSP > private buyer offer?Sell to govt

Sell to private buyer
Households
consume Yes

Yes

No

No

PDS

Notes. This figure provides an overview of the model. Before planting decisions are made, the government announces
fertilizer subsidies and minimum support prices. Farmers take these into account and make planting decisions. Upon
harvest, output shocks are realized. Farmers bring their output to the market where a government buyer may be
present. If the government buyer is present, the farmer sells his crop to the government buyer if MSP is greater
than the price offered by the private buyer. Otherwise, sales are made to the private buyer. Quantity procured by
the government is distributed to households through the public distribution system (PDS). Household satisfy residual
demand in the private market.

Figure 5: Calibrated Demand Parameters

(a) Parameters by Income Decile
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(b) Other Crop Parameters

Value

Panel A: Other Crops

Chickpea 0.005
Cotton 0.015
Groundnut 0.003
Maize 0.009
Mustard and Rapeseed 0.006
Pearl Millet 0.003
Pigeon Pea 0.003
Sorghum 0.003
Soybean 0.006

Panel B: Numeraire

Numeraire 0.947

Notes. The figure and table display the calibrated expenditure share parameters (α) for the demand model. Panel
(a) plots the expenditure shares for rice (αrice) and for the non-staples nest (αnon-staples) across household per-capita
income deciles. These are calculated using household consumption data from India’s National Sample Survey (NSS)
68th round. αrice is the share of the staples budget (rice and wheat) allocated to rice, while αnon-staples is the share
of total income allocated to goods other than rice and wheat. Panel (b) lists the expenditure shares for other non-
staple crops (αc) and a residual numeraire good, which are calibrated as shares of the total non-staple budget based
on national production and price data.
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Figure 6: Supply-Side Estimates: Comparing Model-Predictions with Data

(a) Number of Farmers Growing a Crop
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Notes. This figure compares model-predicted aggregate supply outcomes with the data. The left panel compares the
share of farmers growing each crop, while the right panel compares each crop’s share of total output of all crops.

Figure 7: Demand-Side Model Fit

(a) Expenditures on Rice and Wheat
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(b) Expenditures on Rice Relative to Wheat
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Notes. The left panel shows the share of total monthly expenditures allocated to rice and wheat as observed in the data
and as predicted by the model. The right panel reports the same for the share of total expenditures on rice and wheat
that is spent on rice.
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Figure 8: Impact on Prices and Output of Rice and Wheat
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Notes. This figure shows the percentage change in equilibrium market-level outcomes for rice and wheat under the
four counterfactual policies, relative to the simulated baseline. Panel A reports the percentage change in national-level
market prices paid by consumers. Panel B reports the percentage change in total output, which is the sum of sales in
the private market and procurement by the government.

Figure 9: Impact on Quantity by Market

(a) Change in Government Procurement
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(b) Change in Private Market Sales
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Notes. This figure shows the percentage change in the quantity of rice and wheat sold in different markets under the
four counterfactual policies, relative to the simulated baseline. Panel A reports the percentage change in the quantity
procured by the government. Panel B reports the percentage change in the quantity sold in the private market.
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Figure 10: Impact on Farmers
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(b) Change Proportional to Baseline (%)
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Notes. This figure shows the welfare impacts on farmers across the farm size distribution. The “net utility” corresponds
to farmers’ expected utility from production given in (3) in section 3. Panel A plots the average change in net utility,
measured in rupees, for each farmer size decile. Panel B plots the same change as a percentage of the average baseline
utility for each decile. Farmers are sorted into deciles based on their total farm area, using sampling weights from the
NSS 77th round.
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Figure 11: Impact on Consumers
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(b) Change Proportional to Baseline (%)
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Notes. This figure shows the welfare impacts on consumers across the income distribution. We plot negative com-
pensating variation (−CV), so values greater than zero represent welfare gains. Panel A plots the average per-capita
CV in rupees for each income decile. Panel B plots the per-capita CV as a percentage of average baseline per-capita
expenditure for each decile. Households are sorted into deciles based on their baseline monthly per-capita consumption
expenditure (MPCE) from the NSS 68th round, using sampling weights.
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Figure 12: Comparing Net Effects Across Counterfactuals
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Notes. This figure presents the aggregate welfare impacts for each counterfactual policy, broken down by component.
The components are the total change in consumer welfare (sum of CV), the total change in farmer welfare (sum of
change in net utility), and government savings (the negative of the change in government expenditure). Net welfare
is the sum of these three components. All values are normalized by total baseline government expenditure on fertilizer
subsidies and MSP procurement.
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Table 1: Private Price Markdown Distribution Parameters

State Beta Distribution (α) Beta Distribution (β) Average Price Wedge
(1) (2) (3)

Andhra Pradesh 46.42 26.02 0.36
(2.34) (1.18)

Bihar 52.57 36.61 0.41
(1.23) (0.89)

Chhattisgarh 19.60 7.98 0.29
(1.80) (0.91)

Gujarat 16.64 8.99 0.35
(1.36) (0.89)

Haryana 641.96 293.29 0.31
(200.33) (91.69)

Himachal Pradesh 6.46 2.49 0.28
(1.81) (0.81)

Karnataka 33.97 22.53 0.40
(2.47) (1.82)

Madhya Pradesh 101.95 55.50 0.35
(8.05) (4.40)

Maharashtra 8.01 3.25 0.29
(1.06) (0.46)

Odisha 65.15 53.75 0.45
(4.86) (4.16)

Punjab 793.94 386.91 0.33
(73.67) (35.87)

Rajasthan 97.19 46.46 0.32
(5.04) (2.68)

Tamil Nadu 11.47 6.69 0.37
(1.78) (1.24)

Uttar Pradesh 37.37 23.08 0.38
(1.16) (0.78)

West Bengal 72.81 58.85 0.45
(5.57) (4.10)

Notes. This table presents the estimated parameters of the region-specific Beta distributions for private price mark-
downs, (αµ

r , β
µ
r ). These parameters are estimated using a simulated method of moments (SMM) procedure on price

data for rice and wheat from the NSS 77th round, accounting for censoring due to government procurement. The final
column reports the implied mean price wedge (1 - markdown), calculated as 1 − αµ

r /(α
µ
r + βµ

r ). Standard errors are
reported in parentheses and computed using Bayesian bootstrap with 30 draws.
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Table 2: Production Function and Risk Aversion Parameters

Variable Estimate Standard Error

Labor (βl) 0.194 0.009
Capital (βk) 0.088 0.005
Fertilizer (βf ) 0.098 0.005
Risk aversion (θγ) 1.483 0.273

Notes. This table reports the estimated parameters for the Cobb-Douglas yield function and the mean of the exponential
distribution governing farmer risk aversion. The standard error is computed via Bayesian bootstrap with 30 draws.
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Table 3: Variance of Yield Shocks and Fixed Costs by Farmer Size

Crop Output shock Small Large
(1) (2) (3)

Chickpea 0.229 460 181
(0.009) (156) (224)

Cotton 0.314 3,523 2,138
(0.007) (794) (515)

Groundnut 0.329 874 752
(0.015) (252) (794)

Maize 0.249 722 1,697
(0.007) (184) (775)

Mustard and Rapeseed 0.186 643 738
(0.005) (154) (437)

Pearl Millet 0.235 703 1,474
(0.006) (201) (926)

Pigeon Pea 0.332 716 255
(0.010) (303) (378)

Rice 0.161 1,135 4,751
(0.002) (128) (946)

Sorghum 0.318 705 582
(0.023) (188) (557)

Soybean 0.358 802 673
(0.008) (359) (539)

Wheat 0.147 2 0
(0.003) (35) (197)

Notes. This table reports the estimated crop-specific parameters for the variance of idiosyncratic yield shocks (σ2
εc)

in column (1) and the fixed costs of cultivation (κg,c) in columns (2) and (3). The variance is estimated from the
residuals of the yield function regression. Fixed costs are estimated as part of the full structural model and are allowed
to differ for small and large farmers, defined as those below or above the (unweighted) median farm size. Fixed
costs are reported in thousands of rupees. Standard errors are reported in parentheses and computed using Bayesian
bootstrap with 30 draws.
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Table 4: Parameters Governing Access to Government Procurement
in States with Non-Negligible MSP Procurement

State Crop MSP Parameter (α0rc) MSP Parameter (α1rc)
(1) (2)

Andhra Pradesh Rice -0.62 0.14
(0.14) (0.17)

Chhattisgarh Rice 0.20 0.96
(0.22) (0.38)

Haryana Rice -1.45 0.56
(0.25) (0.32)

Haryana Wheat -0.13 1.40
(0.26) (0.46)

Madhya Pradesh Wheat -1.27 0.77
(0.15) (0.25)

Odisha Rice -1.11 0.72
(0.17) (0.41)

Punjab Rice -0.85 1.14
(0.98) (1.32)

Punjab Wheat -0.27 0.03
(0.22) (0.31)

West Bengal Rice -1.00 0.69
(0.26) (0.24)

Notes. This table reports the estimated parameters governing the probability of a farmer accessing a government
buyer, as specified in Equation (6). The parameters {α0rc, α1rc}r,c are only estimated for state-crop combinations
with non-negligible MSP procurement levels. Standard errors are reported in parentheses and computed using Bayesian
bootstrap with 30 draws.
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Table 5: Productivity Distribution Parameters: Crop-Specific Components

Crop Productivity (µωc) Std (σωc)
(1) (2)

Chickpea 0.905 0.310
(0.058) (0.032)

Cotton 0.946 0.389
(0.082) (0.032)

Groundnut 0.653 0.510
(0.094) (0.065)

Maize 2.224 0.359
(0.120) (0.039)

Mustard and Rapeseed 1.081 0.400
(0.059) (0.036)

Pearl Millet 2.510 0.099
(0.183) (0.054)

Pigeon Pea 0.581 0.452
(0.053) (0.053)

Rice 3.302 0.234
(0.211) (0.015)

Sorghum 1.524 0.315
(0.106) (0.042)

Soybean 1.629 0.167
(0.132) (0.056)

Wheat 3.355 0.190
(0.200) (0.013)

Notes. This table reports the estimated crop-specific components of the farmer-crop productivity distribution, where
ωjc ∼ N(µωr +µωc−σ2

ωc/2, σ
2
ωc). Standard errors are reported in parentheses and computed using Bayesian bootstrap

with 30 draws.
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Table 6: Productivity Distribution Parameters: Region-Specific Components

State Productivity (µωr) State Productivity (µωr)
(1) (2) (3)

Andhra Pradesh 2.199 Maharashtra 1.189
(0.148) (0.081)

Bihar 1.964 Odisha 1.777
(0.131) (0.113)

Chhattisgarh 1.372 Punjab 2.461
(0.084) (0.153)

Gujarat 1.382 Rajasthan 1.579
(0.093) (0.101)

Haryana 2.121 Tamil Nadu 2.215
(0.131) (0.170)

Himachal Pradesh 1.125 Uttar Pradesh 1.853
(0.079) (0.109)

Karnataka 1.446 West Bengal 2.436
(0.110) (0.154)

Madhya Pradesh 1.364
(0.085)

Notes. This table reports the estimated region-specific component of the mean of the farmer-crop productivity distri-
bution, µωr. Standard errors are reported in parentheses and computed using Bayesian bootstrap with 30 draws.
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Appendix

A Additional Figures

Figure A.1: Program Costs As a Share of Total Government Spending
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Notes. The figure plots combined central government expenditure on food and fertilizer subsidies as a share of total
annual expenditures of the central government, from 1998-99 to 2021-22. Source: (Revised) budget estimates of the
Government of India.
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Figure A.2: PDS Consumption by Household Income Percentile
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Notes. The figure shows binned means of the total monthly quantity (in kilograms) of rice and wheat received from
the PDS against household income percentile. Income percentiles are computed using per capita monthly expenditure.
Source: 68th round of the NSS Consumer Expenditure Survey, 2011-2012.

Figure A.3: Sales to Government Buyers by Farmer Size (with state fixed effects)
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Notes. The figure shows binned means of an indicator variable for whether sales were made to a government buyer
against (log) total farm size (in hectares), residualized by state fixed effects. The sample is conditional on the household
selling a non-zero amount of output. Source: 77th round of the NSS, 2019.
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Figure A.4: Share of Output Sold to Government
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Notes. The figure plots the distribution (histogram) of the share of total output sold to government buyers. The sample
is conditional on the household reporting any sale to a government buyer. Source: 77th round of the NSS, 2019.
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B Reduced-form evidence on the impact of fertilizer prices

This appendix provides additional details on the difference-in-differences strategy used to

study the impact of 2010 Nutrient-Based Subsidy (NBS) reform, as discussed in Section 2.2.

To measure each district’s exposure to the policy change, we use a continuous treatment

intensity variable. This measure is constructed for each district d based on its pre-reform

fertilizer usage patterns. Specifically, we define treatment intensity as the average, price-

weighted usage of P and K nutrients per unit of planted area in the pre-reform period

(2004-2009).

Avg. Usage Intensityd =
1

6

2009∑
t=2004

rFPFPdt + rFKFKdt

Total Area Planteddt

where FPdt and FKdt are quantities consumed of nutrients P and K, respectively, while prices

rFP and rFK are national median prices of the nutrients in the period 2004-2009.

First, we estimate a simple event study to examine how fertilizer usage patterns changed

following the reform:

logFndt = α0 +
∑

k ̸=2009

αk · 1{k = t}+ ϕd + ϵdt,

where Fndt is the quantity of nutrient n ∈ {N,P,K} used in district d in year t, and ϕd are

district fixed effects. The coefficients αk capture the average change in fertilizer use in year

k relative to 2009. The estimates are shown in Figure 3b.

Second, to examine whether districts more reliant on P and K fertilizers experienced

differential changes in agricultural output, we use the treatment intensity measure defined

above to run the following (continuous) difference-in-differences specification,

log Ydt = β0 +
∑

k ̸=2009

βk logAvg. Usage Intensityd · 1{k = t}+ ϕd + γt + ϵdt,

where Ydt is the outcome of interest, and ϕd and γt are district and year fixed effects. We

consider two outcomes of interest: (1) district-level output of rice, and (2) district-level

output index. To construct this index, we aggregate the production of all major crops
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within a district using national median prices from the pre-reform period (2004-2009). The

formula for the output index (OIdt) in district d in year t is,

OIdt =
∑
c

pc · ycdt

where pc is the national median price of crop c in the period 2004-2009, and ycdt is the

quantity of crop c grown in district d in year t. The estimates are shown in Figures 3c and

3d.

Table B.1: Summary Statistics of Treatment Intensity

Statistic Value

Number of Districts 310

Standard Deviation (Log) 1.103

Interquartile Range (Log) 1.033

25th Percentile (Rs/ha) 414

Median (Rs/ha) 761

75th Percentile (Rs/ha) 1,164

Notes. Treatment intensity is defined as the average price-weighted consumption of Phosphate (P) and Potash (K)
fertilizers per unit of gross cropped area (in hectares) during the pre-reform period (2004-2009). Nutrient prices are
fixed at their national median levels during the same period.

Table B.1 presents summary statistics for the treatment intensity variable. The median

treatment intensity is 761 Rs/ha, with an interquartile range of roughly 750 Rs/ha (moving

from 414 to 1,164 Rs/hectare). The distribution of log intensity has a standard deviation of

1.10 and an interquartile range of 1.03.

To interpret the magnitude of our estimates, we compute the implied percentage change

in the outcome variable associated with a one standard deviation and an interquartile range

increase in treatment intensity. Table B.2 displays these calculated effects for the output

index.
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Table B.2: Interpretation of Event Study Coefficients (Output Index)

Year Coefficient SE 1 SD Effect (%) IQR Effect (%)

2010 -0.072 0.024 -7.672 -7.203

2011 -0.084 0.022 -8.818 -8.283

2012 -0.141 0.024 -14.367 -13.520

2013 -0.109 0.024 -11.358 -10.677

2014 -0.136 0.031 -13.900 -13.079

Notes. Columns (2) and (3) report the point estimate and standard error (βk) from the event study regression where
the outcome is the log of the output index. Column (4) computes the percentage change in the outcome associated
with a one standard deviation increase in log treatment intensity: (exp(βk × SD) − 1) × 100. Column (5) computes
the effect of an interquartile range increase: (exp(βk × IQR)− 1)× 100.

The results suggest economically significant effects. By 2012—two years after the policy

change—districts with one standard deviation higher (log) treatment intensity experienced a

14.4% larger decline in aggregate agricultural output relative to 2009. Equivalently, districts

at the 75th percentile of pre-reform fertilizer intensity experienced a 13.5% larger decline in

output compared to those at the 25th percentile.
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C Data

C.1 Supply-side data

We apply a series of filters to the CCS and the NSS 77th round data.

Cost of Cultivation Surveys (CCS)

The raw data are available at the plot-crop level, where individual farmers may operate

multiple plots and cultivate the same crop across different plots. To align with our farmer-

level framework, we aggregate this data by summing up inputs and outputs across all plots

operated by each farmer for each crop.

Our empirical analysis focuses on the largest eleven crops. We restrict the sample to

farmers who cultivate only these crops, and drop all observations for farmers who grow

crops outside of these eleven. The estimation relies on within-farmer variation across time.

Therefore, we impose a minimum threshold on the number of observations a farmer has, by

dropping farmers with fewer than three observations.

To deal with outliers, we winsorize input intensities, input prices, and output prices at

the 99% level. Finally, we retain only crop-state combinations with at least 20 observations

in every year and states with at least 100 observations in every year. Summary statistics for

the filtered CCS data are shown in Table C.1.

National Sample Survey (NSS) 77th Round

We drop observations with missing values for key variables, including crop name and state

name. We also drop farmers with land sizes above the 99th percentile. We drop northeastern

states (Assam, Meghalaya, Sikkim, and Nagaland), and union territories (Andaman and

Nicobar Islands, Dadra and Nagar Haveli, and Daman and Diu, and Pondicherry).
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Table C.1: Summary Statistics: Cost of Cultivation Surveys (CCS)

Variable 5th 25th 50th 75th 95th N Farmers N Observations

Total Area (hectares) 0.27 0.74 1.33 2.80 6.10 14,930 76,602

Number of Crops (s) 1.00 1.00 1.00 1.00 2.00 14,930 76,602

Labor / Land 125.50 301.30 453.41 706.33 1143.80 14,930 76,602

Machine / Land 4.40 8.12 11.91 16.67 29.17 14,930 76,602

Fertilizer / Land 40.25 91.67 142.94 197.82 289.32 14,930 76,602

Notes. This table presents summary statistics from the Cost of Cultivation Surveys (CCS) for the period 2011-2019.
The statistics are calculated at the farmer-season level. The table reports the 5th, 25th, 50th, 75th, and 95th percentiles
for total cultivated area, number of unique crops grown, and average input intensities (per hectare). The final two
columns report the total number of unique farmers and the total number of farmer-crop-season observations in the
sample.

We drop observations for crops that are rarely grown in a season or in a state. A crop is

rare for a season if less than 20% of observations for that crop are in that season. A crop is

rare for a state if less than 2% of farmers grow that crop in that state. Summary statistics

for the filtered NSS 77th round data are shown in Table C.2.

We harmonize the states between the CCS and NSS 77th round data by keeping only

those states that are present in both datasets after all the above filters.

C.2 Demand-side data

We use the 68th round of the NSS Consumer Expenditure Survey (2011-2012) to calibrate

household demand for rice, wheat, and other crops. The data include household size, monthly

per-capita expenditure, and quantities of rice and wheat purchased through the Public Distri-

bution System (PDS) and private markets. Summary statistics for these variables are shown

in Table C.3. Total quantities are the sum of PDS and private sources and are reported in
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Table C.2: Summary Statistics: NSS 77th Round Agricultural Households

Variable 5th 25th 50th 75th 95th N Farmers N Observations

Total Area (hectares) 0.12 0.30 0.61 1.21 2.43 28,243 49,879

Number of Crops (s) 1.00 1.00 1.00 1.00 2.00 28,243 49,879

Sold to Govt 0.00 0.00 0.00 0.00 1.00 28,243 49,879

Notes. This table presents summary statistics from the 77th round of the National Sample Survey (NSS) of Agricultural
Households (2019). The statistics are calculated at the household-visit level. The table reports the 5th, 25th, 50th, 75th,
and 95th percentiles for total cultivated area and the number of unique crops grown. “Sold to Govt” is an indicator
variable equal to one if the household sold any of its output to a government agency during the visit. The final two
columns report the total number of unique farming households and the total number of household-crop observations
in the sample.

monthly kilograms.

Table C.3: Summary Statistics: NSS 68th Round Household Data

Variable 5th 25th 50th 75th 95th N Households

Household Size 1 3 4 6 8 99,637

PDS Rice (kg) 0.00 0.00 0.00 12.00 30.00 99,637

PDS Wheat (kg) 0.00 0.00 0.00 2.00 18.00 99,637

Total Rice (kg) 0.00 4.00 15.00 30.00 55.00 99,637

Total Wheat (kg) 0.00 1.00 6.00 20.00 50.00 99,637

Notes. This table presents weighted summary statistics from the NSS 68th round household consumption data (2011-
2012). The statistics are calculated at the household level and report the 5th, 25th, 50th, 75th, and 95th percentiles
for household size and monthly household quantities of rice and wheat. “PDS” quantities are purchases through the
Public Distribution System; “Total” quantities sum PDS and private sources. “N Households” reports the unweighted
number of households in the sample.
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D Additional Details on Estimation of the Structural

Model

D.1 Estimation: Markdown Distribution

The estimation of region-specific markdown distributions, characterized by the parameters

(αµ
r , β

µ
r ), uses data from NSS 68th round for national consumer prices and the NSS 77th

round for farmer-level prices.

National consumer prices for rice and wheat are constructed by taking the median of all

household-reported consumer prices in the NSS 68th round. For farmer-level prices, we use

the NSS 77th round. To mitigate the influence of outliers and potential measurement error,

we trim the price data by dropping observations above the 95th percentile and below the 5th

percentile within each state-crop combination. This results in a sample with observations

ranging from a minimum of 237 to a maximum of ≈ 7, 000 in a given state-crop combination.

For regions without MSP procurement, the full distribution of private prices is observed.

The parameters of the markdown distribution (αµ
r , β

µ
r ) can be expressed as a function of the

moments of the observed markdown distribution.

αµ
r = µ̄r

(
µ̄r (1− µ̄r)

V ar(µr)
− 1

)
,

βµ
r = αµ

r

(1− µ̄r)

µ̄r

,

where µ̄r is the mean of the markdown distribution and V ar(µr) is the variance of the

markdown distribution.

For regions with significant procurement, we implement the simulated method of moments

(SMM) procedure described in the main text. In the simulation step, we use 10,000 draws

to generate the private price distribution. When dropping observations that fall at the MSP

to construct moments from unambiguously private sales, we define a narrow bandwidth of

1% of the MSP.
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Figure D.1: Simulated Markdowns with MSP Censoring
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Notes. This figure illustrates how government procurement at the Minimum Support Price (MSP) affects the observed
distribution of private price markdowns. The “Without MSP” density curve represents the true, latent distribution
of markdowns, simulated here from a Beta distribution. The “With MSP” density curve represents the observed
distribution that results after accounting for procurement. It is generated by replacing a fraction of the offers that fall
below the MSP level (indicated by the vertical line) with the MSP itself. This censoring of the lower tail creates a
point mass at the MSP.

D.2 Estimation: Yield Function

The yield function parameters are estimated using data from the CCS survey. After applying

the filters detailed above, we are left with a panel dataset of ≈ 76, 600 farmer-year-crop

observations.

As described in Section 4, we estimate the yield elasticities (βl, βk, βf ) via a fixed-effects

regression. The specification identifies the parameters from within-farmer-crop variation

over time. Consequently, farmer-crop units with only a single observation do not contribute

to identification and are dropped, reducing the effective estimation sample to ≈ 71, 000

observations.

The residuals from this regression, ε̂jc, are the estimates of realized idiosyncratic yield

shocks. We use these residuals to estimate the parameters of the crop-specific shock distri-
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butions via maximum likelihood. The number of observations available for this estimation

varies by crop, from the maximum of ≈ 27, 000 for rice to the minimum of 154 for sorghum.

D.3 Estimation: Remaining Supply-Side Parameters

The remaining supply-side parameters are estimated by matching moments from the NSS

77th round and the Cost of Cultivation Surveys (CCS). While most moments are derived

from the NSS, the average revenue share spent on fertilizer is calculated using the 2017-2019

CCS wave. This wave was selected because its timing aligns most closely with the NSS 77th

round. This CCS subsample has ≈ 25, 000 observations.

MSP parameter moments: For each state, farmer size group (small and large), and

MSP crop (rice and wheat), we compute the unconditional probability of selling the crop

to the government. This is calculated as the number of farmers selling the crop to the

government divided by the total number of farmers in that state-group. The number of

observations underlying these moments varies from a minimum of 78 for large farmers in

Himachal Pradesh to a maximum of ≈ 6, 500 for small farmers in Uttar Pradesh.

Three sets of moments are used to identify the farmer-crop productivity distribution.

1. Average yield by crop: For each of the eleven crops, we calculate the average yield

across all farmers who cultivate it. The number of observations per crop ranges from

987 for groundnut to ≈ 17, 700 for rice.

2. Average yield by region: For each region, we calculate the average yield by averaging

across all crops and farmers within that region. The number of observations per region

ranges from 681 for Himachal Pradesh to ≈ 11, 300 for Uttar Pradesh.

3. Standard deviation of yield by crop: This moment is constructed in two steps.

First, we compute the standard deviation of yield for each crop within each state.

Second, we take the mean of these standard deviations across states for each crop.

The underlying sample sizes for the state-crop combinations vary significantly, from a

minimum of 2 for Pigeon Pea in Chhattisgarh to a maximum of ≈ 4, 700 for Wheat in
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Uttar Pradesh.

D.4 Identification of Risk Aversion

To validate our identification strategy, we perform a sensitivity analysis where we perturb

the estimated risk aversion parameter (θγ) by a scaling factor ranging from 0.5 to 1.5, holding

all other parameters constant. For each scaled value, we solve the full structural model and

compute the resulting average fertilizer cost share.

Figure D.2 plots the results of this exercise. The figure demonstrates a clear monotonic

relationship: as risk aversion increases, farmers reduce their exposure to risk by lowering the

intensity of variable inputs like fertilizer. This strong sensitivity confirms that the fertilizer

cost share is a highly informative moment for identifying the degree of farmer risk aversion.

Figure D.2: Impact of Risk Aversion on Input Usage
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Notes. This figure plots the model-implied average fertilizer cost share (y-axis) against a scaling factor applied to the
estimated risk aversion parameter (x-axis). The horizontal line represents the observed moment in the data. The
steep slope indicates that input choices are highly sensitive to the level of risk aversion and provides support for the
identification strategy.
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D.5 Constructing National Consumer Prices

National consumer prices are not readily available for non-staple crops like cotton and soy-

beans, and we recover them using our estimated markdown distributions and the observed

farmer prices from the NSS 77th round. This is performed in two steps.

First, for each crop c, we construct a national average markdown, µ̄c. This is calculated

as a weighted average of the estimated region-specific mean markdowns, µ̄r, where the weight

for each region is its share of the total number of farmers in the country cultivating that crop.

This weighting scheme ensures that the national average markdown reflects the geographic

distribution of production. Second, the national average markdown is combined with the

observed national farmer price, P̄fc, to recover the implied national consumer price, Pc =

P̄fc

µ̄c
.
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E Credit Constraints

In our model, we abstract from credit constraints as a determinant of input choices, assuming

farmers can finance their desired level of non-area inputs. This assumption is motivated by

the fact that government policy actively promotes credit access for farmers. Agriculture

is designated as a priority sector by the central bank, mandating that banks and financial

institutions allocate at least 18% of their lending to the sector. Further, all farmers are

eligible for Kisan (“Farmer”) Credit Cards that can be used to purchase inputs at subsidized

interest rates.

Data from the NSS 77th round corroborates this view. The data includes information

on loan sources, purpose, amount, and interest rates. According to the data, institutional

lenders, including banks and cooperatives account for 82% of the value and the number

of loans for farm related revenue expenditures. The remaining share is sourced from non-

institutional lenders, such as moneylenders. Credit for agricultural purposes is also available

at a lower interest rate than for consumption loans. In Figure E.1 we show that the reported

interest rates for farm loans are much lower than for consumption loans and these rates are

similar across the farmer size distribution. Our focus on risk over credit frictions is also

consistent with findings in other contexts; for instance, Karlan et al. (2014) find agricultural

risk to be a more important determinant of production decisions than input credit constraints

among farmers in northern Ghana.
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Figure E.1: Annual Interest Paid for Farm and Consumption Loans
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Notes. The figure plots the average interest rate paid by farmers for farm and consumption loans on total land holdings
(in acres) of the farmer. The data are from the 77th round of the NSS (2019).
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F Appendix for Counterfactuals

F.1 Computational Details

This appendix provides additional details on how we compute the equilibria in the baseline

and counterfactual policy environments. An equilibrium in our model is defined by a vector of

national market prices, P ∗, at which the markets for all agricultural commodities clear. We

solve for this equilibrium iteratively using an algorithm inspired by tatonnement processes.

Before starting, we first compute a scalar multiplier, λ, to ensure that the aggregated

supply lines up with aggregate demand at the observed national prices in the data. We take

these observed national consumer prices as given and solve a one-dimensional optimization

problem to find the value of λ that minimizes the sum of squared differences between aggre-

gate private supply and aggregate private demand for the two main staple crops, rice and

wheat. This calibrated multiplier is then held constant across all subsequent counterfactual

simulations. This multiplier helps adjust for differences in sampling weights and population

sizes between the farmer and household surveys, which were conducted in different years

(2011-12 for households and 2019 for farmers). It also helps adjust for differences in post-

harvest losses that occur during storage, transport, and processing, as well as net trade.

These are all factors which are not explicitly included in our model.

Once a policy parameter is changed (e.g., the fertilizer price or the parameters governing

MSP access), we solve for the new equilibrium price vector, P ∗. This is accomplished using

an iterative price-adjustment algorithm which proceeds as follows:

1. Initialization: The algorithm begins with an initial guess for the national consumer

price vector, P (0), which we set to the observed baseline prices. A step-size parameter,

δ, is initialized to a starting value (e.g., 0.1).

2. Iterative Search: The algorithm iterates for a fixed maximum number of iterations

(Tmax). In each iteration t:

(a) Solve Agent Problems: Given the current price vector P (t−1), we solve the
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utility maximization problems for every farmer and household in our sample. This

yields each farmer’s optimal crop portfolio and input choices, and each household’s

optimal consumption bundle.

(b) Aggregate Supply and Demand: We aggregate these individual decisions

using sampling weights (and the multiplier λ for supply) to compute the total

quantity supplied and demanded for each crop. This gives us government procure-

ment, Qgovt
c , and private market sales, QS,pvt

c , on the supply side. On the demand

side, since government procurement determines PDS transfers (QPDS
c = Qgovt

c ),

we compute the residual private market demand, QD,pvt
c .

(c) Calculate Excess Demand: For each crop c, we calculate the excess demand

in the private market as ED
(t−1)
c = QD,pvt

c −QS,pvt
c .

(d) Update Prices: The price of each crop is updated based on the sign of its excess

demand. If demand exceeds supply, the price is adjusted upwards; if supply

exceeds demand, it is adjusted downwards. The update rule is:

P (t)
c = P (t−1)

c · (1 + δ · sign(ED(t−1)
c ))

This process is repeated for all crops, yielding a new price vector P (t).

3. Adaptive Step Size: The algorithm features an adaptive step-size. We track whether

the sign of excess demand for a crop has “flipped” relative to its sign in the first iteration.

If the signs for all crops flip, it indicates that the prices are oscillating around an

equilibrium. When this occurs, the step size δ is reduced by a factor of 10 (e.g., from

0.1 to 0.01) to facilitate finer adjustments and help with convergence.

4. Termination: The algorithm runs for a pre-specified number of iterations (e.g., 100).

Throughout this process, it tracks the iteration that yields the minimum error, where

error is defined as the maximum percentage deviation between private supply and

private demand across all crops. The final counterfactual equilibrium price vector, P ∗,

is the price vector from the iteration that achieved this minimum error.
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F.2 Additional Counterfactual: Random Allocation of PDS Grains

To isolate the equilibrium effects of PDS targeting, we simulate a counterfactual where

the total volume of PDS grain is distributed randomly across the population rather than

being targeted based on income. In our baseline model, PDS entitlements are determined

by household-specific shares, ϕhc, which are calibrated from the NSS 68th round of the

survey. In this experiment, we replace these heterogeneous shares with a uniform allocation

rule, effectively redistributing entitlements from lower-income households to higher-income

households while keeping the total quantity of PDS grain fixed. We do this while holding

the supply-side policy environment constant: farmers face the same MSP levels and access

probabilities as in the baseline.

Figure F.1: Impact of Random Allocation of PDS Grains on Welfare

(a) Farmer Welfare
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Notes. This figure displays the distributional welfare impacts of a counterfactual scenario where access to subsidized
PDS grains is allocated randomly across households, rather than according to the baseline targeting criteria. Panel A
plots the percentage change in farmer welfare (net utility) by farm size decile, which is driven by general equilibrium
price effects. Panel B shows the change in consumer welfare, measured as compensating variation, expressed as a
percentage of baseline annual household expenditures by household income decile.

This redistribution generates a negative demand shock in the private market because

the marginal propensity to consume (MPC) staples varies inversely with income. Recall

that in our demand specification, household utility is Cobb-Douglas and the parameter
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αh,staple governs the share of the budget allocated to staple crops. Empirically, low-income

households have a much higher αh,staple than high-income households. Since PDS transfers

are inframarginal for almost all households, they function as fungible cash transfers.

The random allocation counterfactual effectively redistributes income from agents with a

high MPC (the poor) to agents with a low MPC (the rich). Because higher-income households

have lower marginal propensity to consume staples, their total consumption rises negligibly

in response to the transfer. On the other hand, lower-income households respond to the loss

of transfer value with a larger contraction in total consumption. The magnitude of the poor’s

contraction exceeds the rich’s expansion, resulting in a net decline in aggregate demand that

depresses private market prices and reduces the incomes of small farmers who rely on it.

Figure F.2: Impact of Random Allocation of PDS Grains on Quantity of Rice and Wheat
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Notes. This figure shows the percentage change in aggregate quantities for rice and wheat under the random PDS
allocation counterfactual relative to the baseline. For each crop, the bars depict the percentage change in total output,
sales in private markets, and sales to government buyers. In this simulation, MSP levels and the probability of finding
a government buyer are held fixed at baseline levels. Consequently, changes in government sales (procurement) are
driven entirely by changes in equilibrium private prices: as the reallocation of PDS grains alters private demand and
market prices, the fixed MSP becomes relatively more or less attractive to farmers, endogenously shifting the total
quantity procured and subsequently distributed through the PDS.
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F.3 Additional Counterfactual Figures

Figure F.3: Impact on Prices and Output of Non-Staple Crops
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(b) Output
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Notes. This figure shows the impact of counterfactual policy changes on prices (Panel A) and quantities (Panel B) of
non-staple crops. The bars represent percent changes relative to the baseline for each crop under four policy scenarios:
lower MSP access, lower fertilizer subsidy, targeted fertilizer subsidy, and equal MSP access across farmer sizes and
locations in states with meaningful MSP procurement in the baseline.

F-5



Figure F.4: Probability of Finding Government Buyer

(a) Rice
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(b) Wheat

Farmer Size Quintile
1 2 3 4 5

P
ro

ba
bi

lit
y 

of
F

in
di

ng
 M

S
P

 B
uy

er

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Baseline Lower MSP Access
Equal MSP Access

Notes. This figure plots the share of farmers with access to a government (MSP) buyer in our simulations by farm
size quintile. The plot data are restricted to farmers in states with non-negligible government procurement at baseline.
Panel A shows results for rice farmers, and Panel B shows results for wheat farmers. Each panel compares the
simulated baseline scenario with the two MSP-related counterfactuals: lower MSP access and equal MSP access.
Under the equal access scenario, all farmers in states with meaningful baseline procurement are assigned a common
probability of finding a government buyer. Farmers are sorted into quintiles based on their total farm area using
sampling weights from the 77th round of the NSS.
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Figure F.5: Impact on Price Risk by Farmer Size

(a) Expected Price of Rice and Wheat
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(b) Variance of Price of Rice and Wheat
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Notes. This figure shows the change in price risk faced by farmers under the “lower MSP access” counterfactual,
by farm size decile. Price risk is characterized by the mean and variance of the ex-ante price distribution faced by
farmers when making their planting decisions. Panel A plots the percentage change in the expected price. Panel B
plots the percentage change in the price variance. Both panels show results for rice and wheat. Farmers are sorted
into deciles based on their total farm area using sampling weights from the 77th round of the NSS.
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Figure F.6: Change in Share of Farmers Growing Rice and Wheat by Farmer Size Group

(a) Rice

Farmer Size Quintile
1 2 3 4 5

C
ha

ng
e 

R
el

at
iv

e 
to

 B
as

el
in

e

-0.8%

-0.6%

-0.4%

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

Lower MSP Access Lower Fert Subsidy
Targeted Fert Subsidy Equal MSP Access

(b) Wheat
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Notes. This figure shows the change in the share of farmers who include rice (Panel A) or wheat (Panel B) in their
crop portfolio, by farm size quintile. The y-axis reports the percentage change in this share relative to the baseline
for each of the four counterfactuals. Farmers are sorted into quintiles based on their total farm area using sampling
weights from the 77th round of the NSS.
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Figure F.7: Change in Average Area Allocated to Rice and Wheat by Farmer Size Group

(a) Rice
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(b) Wheat
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Notes. This figure shows the change in the average area allocated to rice (Panel A) or wheat (B) by farmers, broken
down by farm size quintile. The y-axis reports the percentage change in average allocated area relative to the baseline
for each of the four counterfactuals. Farmers are sorted into quintiles based on their total farm area using sampling
weights from the 77th round of the NSS.

Figure F.8: Impact on Input Use

(a) Labor

Lower
MSP Access

Lower
Fert Subsidy

Targeted
Fert Subsidy

Equal
MSP Access

C
ha

ng
e 

R
el

at
iv

e 
to

 B
as

el
in

e

-0.6%

-0.5%

-0.4%

-0.3%

-0.2%

-0.1%

0.0%

(b) Fertilizer

Lower
MSP Access

Lower
Fert Subsidy

Targeted
Fert Subsidy

Equal
MSP Access

C
ha

ng
e 

R
el

at
iv

e 
to

 B
as

el
in

e

-16%

-14%

-12%

-10%

-8%

-6%

-4%

-2%

0%

Notes. This figure shows the percentage change in the aggregate use of two of the three agricultural inputs for each
counterfactual policy, relative to the baseline. Panel A shows the change in total labor demand (in hours). Panel B
shows the change in total fertilizer use (in kg).
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Figure F.9: Change in Fertilizer Usage Intensity Across Farmer Size Groups
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Notes. This figure shows the percentage change in average fertilizer application intensity (kg per hectare) for each
farmer size decile, relative to the baseline. Farmers are sorted into deciles based on their total farm area using
sampling weights from the 77th round of the NSS.

Figure F.10: Average Farmer Size by Decile
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Notes. This figure plots the average farmer size in acres for farmers in each size decile. Farmers are sorted into
deciles based on their total farm area using sampling weights from the 77th round of the NSS.

F-10


	Introduction
	The Indian Agricultural Policy Landscape
	Data Sources
	Facts

	Model
	Timeline
	Supply: Farmers' Production Problem
	Demand: Households' Consumption Choices
	Equilibrium

	Estimation
	Supply
	Demand
	Model Fit

	Counterfactual Analysis
	Aggregate Impacts: Prices and Quantities
	Distributional Impacts
	Net impacts
	Discussion

	Conclusion
	Additional Figures
	Reduced-form evidence on the impact of fertilizer prices
	Data
	Supply-side data
	Demand-side data

	Additional Details on Estimation of the Structural Model
	Estimation: Markdown Distribution
	Estimation: Yield Function
	Estimation: Remaining Supply-Side Parameters
	Identification of Risk Aversion
	Constructing National Consumer Prices

	Credit Constraints
	Appendix for Counterfactuals
	Computational Details
	Additional Counterfactual: Random Allocation of PDS Grains
	Additional Counterfactual Figures


